首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同类型表面活性剂对纳米SiO2流体粘度的影响   总被引:1,自引:0,他引:1  
系统地研究了不同类型的表面活性剂对低浓度纳米SiO2流体粘度的影响规律,并在此基础上深入探讨了不同碳链长度的阳离子和非离子表面活性剂对纳米SiO2流体粘度的影响。结果表明,阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对纳米流体粘度的影响较小,其相对粘度值维持在1.23左右;而阳离子表面活性剂十四烷基三甲基溴化铵(TTAB)、十六烷基三甲基溴化铵(CTAB)、十八烷基三甲基溴化铵(OTAB)、十六烷基氯化吡啶(CPC)、非离子表面活性剂OP-8、OP-10和两性离子表面活性剂DXS14、DXS18对纳米流体粘度的变化影响较大,其最大相对粘度值分别能达到3.42、1.82和8.87。同时也发现,阳离子表面活性剂碳链越长,纳米流体最高粘度值越大,且纳米流体最高粘度所对应的表面活性剂浓度均在其临界胶束浓度值附近。  相似文献   

2.
In this study, sub-200?nm, crosslinked latex particles with a narrow particle size distribution were prepared by one-step emulsion polymerization in the presence of particle coagulation. The relationship between the particle shape and particle coagulation was investigated by varying the time of crosslinking network structure formation and particle coagulation. Particles with irregular shapes such as doublet, triplet, and ellipsoid were obtained using divinylbenzene (DVB) and ethylene glycol dimethacrylate (EGDMA) as the crosslinking agents, because the crosslinking network structure of particles was formed before the particle coagulation. In contrast, latex particles with a uniform spherical shape were also prepared using triallyl isocyanurate (TAIC) or dihydrodicyclopentadienyl acrylate (DCPA) as the crosslinking agents by delaying the time of crosslinking network structure formation. Alternatively, uniform spherical latex particles were prepared by bringing forward the particle coagulation time using cationic initiator, 2, 2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH). This study presents a new idea that would further broaden the application of particle coagulation in emulsion polymerization.  相似文献   

3.
Thermal conductivity is an important parameter in the field of nanofluid heat transfer. This article presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids.  相似文献   

4.
New physical model is presented resulting in a simple formula for the dependence of viscosity η of colloidal liquid solution on the shear rate G applicable to a wide variety of systems including complex natural liquids like petroleum. The principal point of the model is the fractal nature of colloid particle aggregates present in the liquid. Such aggregates are experimentally detected now in non-Newtonian liquids. The model is based on calculation of energy loss on colloidal particle aggregate of fractal structure localized in the flow of liquid with shear rate. We have performed the viscosity measurement experiments which confirmed successfully the developed physical model. Also, we demonstrate experimentally that petroleum colloidal particles and magnetic iron oxide nanoparticles can form composite fractal-like aggregates in natural petroleum materials. Our model can explain both the non-Newtonian properties of petroleum and sensitivity of petroleum viscosity to external magnetic fields.  相似文献   

5.
A new theoretical model for thermal conductivity of nanofluids is developed incorporating effective medium theory, interfacial layer, particle aggregation and Brownian motion-induced convection from multiple nanoparticles/aggregates. The predicated result using aggregate size, which represents the particle size in the actual condition of nanofluids, fits well with the experimental data for water-, R113- and ethylene glycol (EG)-based nanofluids. The present model also gives much better predictions compared to the existing models. A parametric analysis, particularly particle aggregation, is conducted to investigate the dependence of effective thermal conductivity of nanofluids on the properties of nanoparticles and fluid. Aggregation is the main factor responsible for thermal conductivity enhancement. The dynamic contribution of Brownian motion on thermal conductivity enhancement is surpassed by that of static mechanisms, particularly at high volume fraction. Predication also indicated that the viscosity increases faster than the thermal conductivity, causing the highly aggregated nanofluids to become unfavourable, especially for df = 1.8.  相似文献   

6.
Viscosity is one of the most important properties of colloids in mixing, transportation, stabilization, energy consumption, and so on. According to Einstein‘s viscosity equation, the viscosity of a colloidal dispersion increases with the increase of particle concentration. And the equation can be applicable to all micro-particle dispersions, because the effect of solvation films coated on particles can be neglectable in that case. But with the decrease of particle size to nano-scale, the formation of solvation films on nano-particles can greatly affect the viscosity of a dispersion, and Einstein‘s equation may not be applicable to this case. In this work, one kind of micro-size silica particle and two kinds of nano-size silica particles were used to investigate the effect of solvation films on dispersion viscosity, dispersed in water and ethyl alcohol solvents, respectively. The results of theoretical calculation and experimental investigation show that the increase of viscosity is contributed from solvation films by more than 95 percent for nano-particle dispersions, while less than 10 percent for micro-particle dispersions.  相似文献   

7.
许东华  孙昭艳 《高分子科学》2015,33(11):1550-1561
The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(PDMS), are investigated. In order to study the effect of particle shape on the structure and rheological properties of suspensions, the content of surface oxygen-containing functional groups of carbon-based particles is controlled to be similar. Original spherical-like CB(fractal filler), rod-like MWNT and sheet-like graphene form large agglomerates in PDMS, while spherical HCS particles disperse relatively well in PDMS. The dispersion state of carbon-based particles affects the critical concentration of forming a rheological percolation network. Under weak shear, negative normal stress differences(ΔN) are observed in CB, MWNT and graphene suspensions, while ΔN is nearly zero for HCS suspensions. It is concluded that the vorticity alignment of CB, MWNT and graphene agglomerates under shear results in the negative ΔN. However, no obvious structural change is observed in HCS suspension under weak shear, and accordingly, the ΔN is almost zero.  相似文献   

8.
9.
采用神华煤制备煤浆,分析了颗粒粒径比λ和小颗粒体积分数ξ对双峰分布浆体黏度的影响,根据浆体黏度的关联式预测了煤浆的黏度并且与实验结果进行了比较。结果表明,采用双峰分布的颗粒制浆可以有效地降低浆体的黏度,同时可以获得较大的浆体体积分数 。在相同体积分数下,随着颗粒粒径比λ的增加,浆体的黏度迅速下降。当小颗粒体积分数ξdp1为35%时,浆体的黏度最小。采用Ouchiyama模型计算浆体的最大体积分数Φm与实验值较为吻合,而浆体的本质黏度[μ]基本保持不变。考虑λ和小颗粒体积分数ξ对双峰分布浆体的最大体积分数Φm的影响,可以采用单峰分布浆体的黏度关联式预测双峰分布浆体的黏度。  相似文献   

10.
Deoxyribonucleoside‐modified squaraines were synthesized by Sonogashira coupling reactions using an unsymmetrical, terminal alkynylated benzothiazolium squaraine dye. These non‐natural nucleosides exhibited fluorescent ‘turn‐on’ properties in viscous conditions with an enhancement of >300‐fold. The viscosity‐dependent fluorescence enhancement was attributed to a combination of hampering both molecular aggregation and intramolecular bond rotation of the squaraine probe. Fluorescence microscopy allowed visualization of highly viscous regions during various stages of cellular mitosis.  相似文献   

11.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   

12.
The complex absorbing potential along with correlated independent particle potential (CIP) Fock space multireference coupled cluster method is used for the study of resonances. We have studied shape resonance of e?‐ F2, e?‐ N2O and e?‐CO molecules. In particular, we have studied e?‐ F2 scattering at different bond lengths to know whether is bound at the equilibrium bond length of F2. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
We report on a series of flow velocity and efficiency profiles, which were measured across the cross section of preparative chromatographic columns packed with different stationary phase materials using computed tomography. It is shown that this non-invasive technique is very useful for visualization of the inner part of a packed column and measurement of the spatial resolved column packing properties. For evaluation of the influence of the particle shape on the velocity distribution and column performance, irregular and spherical reversed phases were studied in detail. The results showed a decreasing velocity towards the column wall most certainly due to a lower permeability. This effect was much less pronounced in the case of spherical particles, indicating a more homogenous packing structure. The influence of the column packing pressure, as a possible measure for improvement of the packing homogeneity was also studied. It was shown that under the same packing conditions spherical particles always lead to a more homogeneous packing. The overall results of this work contribute to the origin of the fact that spherical material is superior to irregular one from the hydrodynamic point of view.  相似文献   

14.
A model is presented for an aggregation act occurring between two aggregates of any mass and fractal dimension. The kinetics of aggregation is also analyzed, as well as some previous works concerning the structure of fractal aggregates. As a result, a generalized curve is derived describing the normalized dynamic radius of clusters of spherical character as dependent on both the aggregate fractal dimension and the space dimension. It is shown how the curve may be utilized to determine the dynamic size of anisotropic aggregates. The obtained dependence can be used to estimate the dynamic size of fractal aggregates, to evaluate the prefactor in mass–radius relation and to model the aggregation kinetics.  相似文献   

15.
The fractal nature of latex particles and their aggregates was characterised by image analysis in terms of fractal dimensions. The one- and two-dimensional fractal dimensions, D 1 and D 2, were estimated for polystyrene latex aggregates formed by flocculation in citric acid/phosphate buffer solutions. The dimensional analysis method was used, which is based on power law correlations between aggregate perimeter, projected area and maximum length. These aggregate characteristics were measured by image analysis. A two-slopes method using cumulative size distributions of aggregate length and solid volume has been developed to determine the three-dimensional fractal dimension (D 3) for the latex aggregates. The fractal dimensions D 1, D 2 and D 3 measured for single latex particles in distilled water agreed well with D 1 = 1, D 2 = 2 and D 3 = 3 expected for Euclidean spherical objects. For the aggregates, the fractal dimension D 2 of about 1.67 ± 0.04 (±standard deviation) was comparable to the fractal dimension D 3 of approximately 1.72 ± 0.13 (±standard deviation), taking the standard deviations into account. The measured three-dimensional fractal dimension for latex aggregates is within the fractal dimension range 1.6–2.2 expected for aggregates formed through a cluster-cluster mechanism, and is close to the D 3 value of about 1.8 indicated for cluster formation via diffusion-limited colloidal aggregation. Received: 28 September 1998 Accepted: 29 October 1998  相似文献   

16.
Nanofluids having high thermal conductivity enhancement relative to conventional pure fluids are fluids engineered by suspending solid nanoparticles into base fluids. In the present study, calculating the Van der Waals interaction energy between a nanoparticle and an ordered liquid nanolayer around it, the nanolayer thickness was determined, the average velocity of the Brownian motion of nanoparticles in a fluid was estimated, and by taking into account both the aggregation of nanoparticles and the presence of a nanolayer a new thermal conductivity model for nanofluids was proposed. It has been shown that the nanolayer thickness in nanofluids is independent on the radius of nanoparticles when the radius of the nanoparticles is much greater than the nanolayer thickness and determines by the specific interaction of the given liquid and solid nanoparticle through the Hamaker constant, the surface tension and the wetting angle. It was proved that the frequency of heat exchange by fluid molecules is two orders of magnitude higher than the frequency of heat transfer by nanoparticles, so that the contribution due to the Brownian motion of nanoparticles in the thermal conductivity of nanofluids can be neglected. The predictions of the proposed model of thermal conductivity were compared with the experimental data and a good correlation was achieved.  相似文献   

17.
We apply a recent non-equilibrium statistical mechanical theory for nonionic micellar solutions to study their viscoelastic properties. It is shown that shear-induced growth in average micellar size does not lead to the shear-thickening observed experimentally in ionic micellar systems, suggesting that intermicelle electrostatic interactions may be responsible for the viscosity build-up. Instead, we find shear thinning and gradual increase of normal stress throughout the studied range of shear rates.  相似文献   

18.
刘立华  李鑫  曹菁  令玉林 《应用化学》2011,28(7):777-784
以甲胺、烯丙基氯、NaOH、氯化苄和偶氮二异丙基咪唑啉盐酸盐为原料,合成了聚二烯丙基甲基苄基氯化铵(PDAMABC),采用FT IR、1H NMR和元素分析对其结构进行表征,并考察了其在氯化钠、氯化钾、溴化钾、氯化钙、氯化镁、硫酸镁和硫酸钠溶液中的粘度行为。 将所得水相和低沸点馏分回用,二烯丙基甲基胺的收率从72.79%提高至83.41%;以水与乙醇为混合溶剂(V(H2O)∶V(C2H5OH)为1∶3~2∶3),合成的二烯丙基甲基苄基氯化铵收率较高且水溶性好。 PDAMABC的比浓粘度随外加盐浓度增加而降低。 在0.1 mol/L NaCl溶液中,当其质量浓度低于0.031 25 g/L时,表现为聚电解质行为;质量浓度大于0.125 g/L时,表现为中性聚合物的粘度行为。 外加盐对比浓粘度的影响顺序为:Na2SO4<NaCl<KCl<MgSO4<MgCl2<CaCl2<KBr。 阴离子的屏蔽作用是导致比浓粘度降低的主要原因。  相似文献   

19.
PDMS (polydimethylsiloxane)/TEOS (tetraethoxysilane) system Ormosils (organically modified silicates) can be rubbery or rigid, depending on their chemical composition and processing conditions. In order to determine the relationship between the viscosity and the structure of the Ormosil solutions through the sol-to-gel transition, five kinds of sols (three levels of PDMS, three levels of H2O) were prepared with refluxing. Viscosities were measured using an oscillation method with a cone-and-plate type apparatus. Liquid state 29Si-NMR analyses were made to obtain structural information of the solution. The composition of the starting solution affected the sol-to-gel transition process. The degree of hydrolysis, depending upon the H2O content, controlled the reaction rate and structure of the polymer. Addition of PDMS also contributed to the acceleration of the sol-to-gel transition due to larger PDMS copolymerizing units.  相似文献   

20.
In real catalyst systems, it is difficult to establish a correlation between catalytic properties and the shape (crystal planes, corners and steps) of the active catalytic particles. In this paper we present a clear shape dependence of the catalytic properties of a Vulcan‐supported fuel cell catalyst having 4 nm cubo‐octahedral platinum(0) nanocrystallites with (111) and (100) surfaces stabilized by sodium polyacrylate. The electrode materials were characterized by CO‐stripping cyclic voltammetry and transmission electron microscopy (TEM), showing that no agglomeration had occurred among the nanoparticles on the catalyst surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号