共查询到20条相似文献,搜索用时 376 毫秒
1.
C. H. Patel A. B. Patel N. K. Bhatt P. N. Gajjar 《Physics and Chemistry of Liquids》2018,56(2):153-163
The calculations of electrical resistivity of Sn–Pb liquid metallic alloys/solutions are investigated by self-consistent approach. We employ modified empty-core pseudopotential to represent electron–ion interaction, while partial structure factors are calculated using Aschroft–Langreth scheme with hard sphere reference system. The potential parameters for elemental metals were optimised to structural data in our previous paper. Computed results for resistivity as a function of temperature and concentration are discussed with other such results. Overall good agreement confirms the applicability of the present model potential for computing the electrical properties, including thermal conductivity and thermoelectric power for liquid metallic alloys. 相似文献
2.
Y.G. Shi A.A. Belik M. Tachibana Y. Katsuya K. Yamaura E. Takayama-Muromachi 《Journal of solid state chemistry》2009,182(4):881-887
The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs2O6 as a host. The composition was identified as Na1.4Os2O6·H2O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na1.4Os2O6·H2O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) Å). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the β-type pyrochlore superconductor AOs2O6 (A=Cs, Rb, and K). The Sommerfeld coefficient is 22 mJ K−2 mol−1, being the smallest among AOs2O6. A magnetic anomaly at ∼57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found. 相似文献
3.
An ab initio molecular potential model is employed in this paper to show its excellent predictability for the transport properties of a polyatomic gas from molecular dynamics simulations. A quantum mechanical treatment of molecular vibrational energies is included in the Green and Kubo integral formulas for the calculation of the thermal conductivity by the Metropolis Monte Carlo method. Using CO2 gas as an example, the fluid transport properties in the temperature range of 300–1000 K are calculated without using any experimental data. The accuracy of the calculated transport properties is significantly improved by the present model, especially for the thermal conductivity. The average deviations of the calculated results from the experimental data for self-diffusion coefficient, shear viscosity, thermal conductivity are, respectively, 2.32%, 0.71% and 2.30%. 相似文献
4.
5.
《Physics and Chemistry of Liquids》2012,50(4):442-453
In the present article, we report the electrical transport properties viz. the electrical resistivity (ρ), the thermoelectric power and thermal conductivity (σ) of several monovalent, divalent and polyvalent liquid metals of the different groups of the periodic table on the basis of model potential formalism. The well-known empty core model potential of Ashcroft is used for the first time with seven local field correction functions proposed by Hartree, Hubbard–Sham, Vashishta–Singwi, Taylor, Ichimaru–Utsumi, Farid et al. and Sarkar et al. in the present computation and found suitable for such study. In the calculation of these properties we have used the values of the theoretical structure factors due to hard core fluid theory. It is concluded that the comparisons of present and theoretical or experimental findings wherever exists are highly encouraging. 相似文献
6.
Santanu Kumar Padhi Nicoletta Baglieri Valentina Bonino Angelo Agostino Lorenza Operti Nicolae Dan Batalu Mariana Carmen Chifiriuc Marcela Popa Mihail Burdusel Mihai Alexandru Grigoroscuta Gheorghe Virgil Aldica Dana Radu Petre Badica Marco Truccato 《Molecules (Basel, Switzerland)》2021,26(16)
We report for the first time on the antimicrobial activity of MgB2 powders produced via the Reactive Liquid Infiltration (RLI) process. Samples with MgB2 wt.% ranging from 2% to 99% were obtained and characterized, observing different levels of grain aggregation and of impurity phases. Their antimicrobial activity was tested against Staphylococcus aureus ATCC BAA 1026, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. A general correlation is observed between the antibacterial activity and the MgB2 wt.%, but the sample microstructure also appears to be very important. RLI-MgB2 powders show better performances compared to commercial powders against microbial strains in the planktonic form, and their activity against biofilms is also very similar. 相似文献
7.
8.
We have computed the phase diagrams for multi-component M-C-O-H (M=Li, Na, K) systems using first-principles density functional theory complemented with lattice phonon calculations. We have identified all CO2 capture reactions that lie on the Gibbs free energy convex hull as a function of temperature and the partial pressures of CO2 and H2O. Our predicted phase diagrams for CO2 capture reactions are in qualitative and in some instances quantitative agreement with experimental data. The Na2CO3/NaHCO3 and K2CO3/KHCO3 systems were found to be the most promising candidates of all those we investigated for both pre- and post-combustion CO2 capture. Overall, we show that our calculation approach can be used to screen promising materials for CO2 capture under different conditions of temperature and pressure. 相似文献
9.
J. Molenda 《Journal of Thermal Analysis and Calorimetry》1992,38(9):2171-2179
The electrical properties of NaxM1+yO2 (M=Mn,Co) were measured as a function of temperature under conditions of thermodynamic equilibrium for a quenched defect structure. The results of electrochemical studies of NaxM1+yO2 are also presented. A correlation is demonstrated between the structures of the ionic and electronic defects in these materials and the potential changes of the cathode in Na/Na+/NaxM1+yO2.The author is grateful to Prof. S. Mrowec and Dr. A. Stoklosa for helpful discussions. 相似文献
10.
采用固相法首次合成了氧离子导体La2Mo1.9Sc0.1O9陶瓷样品,进行了XRD、SEM表征,用交流阻抗谱、氧浓差电池等电化学方法研究了样品在450~850℃下的离子导电性。结果表明,该陶瓷样品具有立方相La2Mo2O9结构,掺杂5%的Sc3+能有效地抑制La2Mo2O9在大约580℃时的相变;在氧化性气氛中是纯的氧离子导体,而在还原性气氛中为氧离子与电子的混合导体,850℃时的氧离子电导率为0.04S·cm-1。 相似文献
11.
The two-phase region in the system 2(ZnSe)x(CuInSe2)1−x covers the chemical composition range 0.10<x?0.36, in which a tetragonal and a cubic phase are coexisting. The structural relation between both phases was determined by selected area diffraction (SAD) and transmission electron microscopy (TEM). Both crystal structures are very similar and the extremely small mismatch of the lattice constants of the tetragonal phase and the embedding cubic matrix phase allows for the grain boundaries to be virtually strain-free and, therefore, without notable dislocations. The tetragonal phase forms grains of flat discus-like shape in the ambient cubic matrix, with the short discus axis parallel to the tetragonal c-axis. TEM experiments proved that the discus-shaped tetragonal particles are collinear with the (100)cub, (010)cub and (001)cub planes of the cubic phase. Cooling and annealing experiments revealed a near-equilibrium state only to be realized for small cooling rates less than 2 K/h and/or for a long-time annealing with subsequent rapid quenching. Only then there will be no cation ordering in both, the tetragonal domains and the parental cubic matrix phase. If, however, the samples are kept in a state far away from the equilibrium condition both phases reveal Stannite-type cation ordering. Within the composition range of 0?x?0.10 only tetragonal 2(ZnSe)x(CuInSe2)1−x-alloys exist. At concentration rates above 36 mol% 2(ZnSe) only cubic structured solid solutions of ZnSe and CuInSe2 are found to be stable. However, in the range 36 mol% to about 60 mol% 2(ZnSe) tiny precipitates with Stannite-like structure exist, too. 相似文献
12.
Vendula Houšková Václav Štengl Snejana Bakardjieva Nataliya Murafa Václav Tyrpekl 《Central European Journal of Chemistry》2009,7(2):259-266
Nanocrystalline titania particles doped with ruthenium oxide have been prepared by the homogenous hydrolysis of TiOSO4 in aqueous solutions in the presence of urea. The synthesized particles were characterized by X-ray diffraction (XRD), Scanning
Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM), Selected Area Electron Diffraction (SAED)
and Nitrogen adsorption-desorption was used for surface area (BET) and porosity determination (BJH). The photocatalytic activity
of the Ru-doped titania samples were determined by photocatalytic decomposition of Orange II dye in an aqueous slurry during
irradiation at 365 nm and 400 nm wavelengths.
相似文献
13.
A composite system of Fe3O4 nanoparticle-doped cholesteric liquid crystals with properties of broadband reflection and controllable temperature under high-frequency electric field is proposed. The broadband reflection can shield the near-infrared light in summer and the electromagnetic-thermal effect by the Fe3O4 nanoparticles can deice or defrost in winter for high transmittance and good safety. Furthermore, the thermal effect may be precisely controlled and significantly enhanced by adjusting the factors of the doped concentrations and the applied electric field parameters (duration time, magnitude and frequency). This composite system may have potential applications for multifunctional windows of architectures and vehicles. 相似文献
14.
Soon Hyung Kang Moon-Sung Kang Sang-Hyun Choi Jae-Yup Kim Hyun-Sik Kim Taeghwan Hyeon Yung-Eun Sung 《Electrochemistry communications》2008,10(9):1326-1329
Dye-sensitized solar cells (DSSCs) employing a viscous non-volatile electrolyte were prepared by utilizing anatase TiO2 nanorods (synthesized via oriented attachment) as a photoanode material. One promising way to enhance the photovoltaic performance of DSSCs employing viscous electrolytes is to increase ion conductivity by increasing the salt concentration. This is accompanied by an acceleration of the charge recombination reaction and the limiting of the overall conversion efficiency. The results showed that a TiO2 nanorod electrode enables more favorable electron transport than a conventional nanoparticle-based electrode due to the improved electron diffusion length and the large intrinsic surface area. 相似文献
15.
Minshou Zhao Xinbo Zhang Yujun Chai Changying Sun 《Research on Chemical Intermediates》2006,32(5):403-417
The structures and the electrochemical characteristics of La0.7−x
CexMg0.3Ni2.8Co0.5 (x = 0.1–0.5) alloy, Ti0.25−x
ZrxV0.35Cr0.1Ni0.3 (x = 0.05–0.15) alloy and AB3<x<5-type alloy, which are the representative examples of AB3-type alloy, solid solution alloy and non-AB5-type alloy, respectively, have been investigated, and the performances of MH-Ni battery in which AB3<x<5 type alloy is used as the negative electrode material are examined at relatively low temperature. 相似文献
16.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. 相似文献
17.
18.
Ochsenkühn-Petropoulou MT Altzoumailis AF Argyropoulou R Ochsenkühn KM 《Analytical and bioanalytical chemistry》2004,379(5-6):792-795
The electrophoretic deposition technique was applied for the production of MgB2 superconducting coatings on various substrates, by using a suspension of MgB2 superconducting powder in an organic solvent. The main parameters that affect the deposition rate of the process and the quality of the coatings produced, such as the initial concentration of the suspension, the applied voltage and the distance between the electrodes, were investigated and optimized. The coatings produced were characterized and investigated for possible interaction between the substrate and the deposited superconductor by X-ray diffraction. The superconducting properties were measured by magnetic susceptibility (superconducting quantum interference device). 相似文献
19.
Polyaniline coated silica/maghemite nanoparticles (PANI/SiO2/γ-Fe2O3 composites) were synthesized by the combination of a sol-gel process and an in-situ polymerization method, in which ferrous and ferric salts as well as tetraethyl orthosilica (TEOS) acted as the precursor for γ-Fe2O3 and silica, respectively. As a result, the SiO2/γ-Fe2O3 particle showed a core-shell structure, with γ-Fe2O3 as the magnetic core and silica as the shell of the particle. The shell thickness can be controlled by changing the TEOS concentration. The PANI/SiO2/γ-Fe2O3 composites revealed a multilayer core-shell structure, where PANI is the outer shell of the composite. The doping level and the conductivity of PANI/SiO2/γ-Fe2O3 composites decreased with increasing the TEOS content due to the presence of the less coated PANI on the SiO2/γ-Fe2O3 core at higher TEOS content. For a SQUID analysis at room temperature, all γ-Fe2O3 containing composites showed a typical superparamagnetic behavior. The saturation magnetization of SiO2/γ-Fe2O3 nanoparticles decreased with increasing the TEOS content due to the increase in silica shell thickness, while the saturation magnetization of PANI/SiO2/γ-Fe2O3 composites also decreased with increasing the TEOS content, which is attributed to the lower conductivity of PANI in the composites at higher TEOS content. 相似文献
20.
The thick-film semiconductor sensor for liquid petroleum gas (LPG) detection was fabricated using a mixed WO3-based sensor. We present the characterization of both their structural properties by means of XRD measurements and the electrical characteristics by using gas-sensing properties. The sensing characteristics such as sensitivity, working range, cross-sensitivity and response time were studied by using nanosized WO3-based mixed with different metal oxides (SnO2, TiO2 and In2O3) and doped with noble metals (Au, Pd and Pt). The WO3-based mixed with 5 wt.% In2O3 and 0.5 wt.% Pd showed the higher sensing characteristic at low concentration of LPG sensor at an operating temperature 225 °C. 相似文献