首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge transfer (CT) complex formation between 2,6-diaminopyridine (2,6-DAP) as the electron donor with 2,5-dihydroxy-p-benzoquinone (DHBQ) as the electron acceptor has been studied spectrophotometrically in different polar solvents at room temperature. A new absorption band due to CT complex formation was observed near 490?nm. The stoichiometric ratio of the complex has been identified by Job's, photometric and conductometric titration methods to be 1?:?1. Benesi–Hildebrand equation has been applied to estimate the formation constant (K CT) and molecular extinction coefficient (ε). They recorded high values confirming high stability of the formed complex. The physical parameters, oscillator strength (f), transition dipole moment (μ), ionisation potential (I D), resonance energy (RN ) and standard free energy change (ΔG°) of the formed complex were determined and evaluated in the different solvents. The solid complex between 2,6-DAP and DHBQ has been isolated and characterised using elemental analysis, FT-IR and 1H-NMR measurements.  相似文献   

2.
Charge transfer (CT) complex formation between 4-dimethylaminopyridine (4-DMAP) as the electron donor and 2,5-dihydroxy-p-benzoquinone (DHBQ) as the π-electron acceptor has been investigated spectrophotometrically in methanol (MeOH), ethanol (EtOH) and acetonitrile (AN). The stoichiometry of the complex has been identified by Job’s and photometric titration methods to be 1:1. The Benesi–Hildebrand equation has been applied to estimate the formation constant (KCT) and molecular extinction coefficient (ε). It was found that the value of KCT is larger in AN than in MeOH and EtOH. The thermodynamic parameters are in agreement with the KCT values in that the enthalpy of formation (?ΔH) has a larger value both in EtOH and MeOH than in AN, suggesting higher stability of the complex in EtOH. The complex formed between 4-DMAP and DHBQ has been isolated as a solid and characterised using elemental analysis, FTIR and 1H NMR measurements. Moreover, it has been found that the formed complex involves proton transfer in addition to CT.  相似文献   

3.
The addition of thioacetic acid to unsaturated alcohols or acids was utilized to obtain mercaptoalkanols which were condensed with suitable carybonyl compounds to prepare 24 methyl-substituted 1,3-oxathianes. The 1H NMR spectra of the 1,3-oxathiane products were recorded at 60, 100 and/or 300 MHz and fully analysed. The results are best explained by a chair form which is completely staggered in the C-4? C-5? C-6 moiety ψ45 or (ψ56=60±1°). 1,3-Oxathianes having syn-axial 2,4- (and/or 2,6-) methyl-methyl interactions exist appreciably, if not exclusively, in twist forms. The vicinal coupling constants lead to the conformational free energies of axial methyl groups at C-4, ΔG°=7.4±0.4 kJ mol?1, and at C-5, ΔG°=3.7±0.3 kJ mol?1, in good agreement with previous estimates. They also show that both r-4,cis-5,trans-6- and r-4,trans-5,trans-6- trimethyl-1,3-oxathianes greatly favour the chiar form where the methyl group at C-4 is axial. The chair-twist energy parameters are reestimated at ΔH°CT 27.0 kJ mol?1, ΔS°CT 11.6J mol?1K?1, and ΔG°CT(298) 23.5 kJ mol?1 for a 2,5-twist form.  相似文献   

4.
Thiazolidine-2-thione (T2T) has been studied spectrophotometrically by UV–visible and IR spectra. The spectral studies have indicated that T2T has two tautomeric forms, namely thione and thiole forms, in addition to the dimeric thioamide complex existing as a hydrogen-bonded dimer of two thione forms. Interaction of the T2T as an electron donor with iodine as a typical σ-type acceptor has been studied spectrophotometrically. Electronic absorption spectra of the system T2T–I2 in several organic solvents of different polarities have performed a clear charge transfer (CT) band in each spectrum. Formation constants (KCT) and molar absorption coefficients (?CT) and thermodynamic properties, ΔH, ΔS, and ΔG, of this system in various organic solvents were determined and discussed. The stoichiometric ratio of the T2T–I2 system in solutions was found to be 1:1 T2T:I2, whereas the elemental analysis of the prepared solid CT complex has illustrated the same stoichiometry. The obtained KCT and ?CT values have indicated that T2T is a donor of moderately strength capable of interacting with the iodine just to form the corresponding CT complex with an iodine molecule without further reducing of the iodine to either of the corresponding poly-iodide ions viz. I3?, I5?, etc. This action of spongy trapping of iodine simulates in vitro the chemical scenario of the anti-thyroid action of this compound.  相似文献   

5.
The charge transfer complex (CTC) formation of 5,10,15,20‐tetra(p‐tolyl)porphyrin (TTP) and zinc 5,10,15,20‐tetra(p‐tolyl)porphyrin with some aromatic nitro acceptors such as 2,4,6‐trinitrophenol (picric acid), 3,5‐dinitrosalicylic acid, 3,5‐dinitrobenzoic acid (DNB) and 2,4‐dinitrophenol (DNP) was studied spectrophotometrically in different organic solvents at different temperatures. The spectrophotometric titration, Job's and straight line methods indicated the formation of 1:1 CTCs. The values of the equilibrium constant (KCT) and molar extinction coefficient (εCT) were calculated for each complex. The ionization potential of the donors and the dissociation energy of the charge transfer excited state for the CTC in different solvents was also determined and was found to be constant. The spectroscopic and thermodynamic properties were observed to be sensitive to the electron affinity of the acceptors and the nature of the solvent. No CT band was observed between Zn‐TTP as donor and DNP or DNB as acceptors in various organic solvents at different temperature. Bimolecular reactions between singlet excited TTP (1TTP*) and the acceptors were investigated in solvents with various polarities. A new emission band was observed. The fluorescence intensity of the donor band decreased with increasing the concentration of the acceptor accompanied by an increase in the intensity of the new emission. The new emission of the CTCs can be interpreted as a CT excited complex (exciplex). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Charge transfer complex formation between 2-aminopyridine (2AP) as the electron donor with 2,5-dihydroxy-p-benzoquinone (AHBQ) as the π-electron acceptor has been investigated spectrophotometrically in acetonitrile (AN) and 50% acetonitrile + 50% 1,2-dichloroethane (V/V), (ANDC). The stoichiometry of the complex has been identified by Job’s method to be 1:1. The Benesi-Hildebrand equation has been applied to estimate the formation constant (K CT) and molecular extinction coefficient (ε). It was found that the value of K CT is larger in ANDC than in AN. The thermodynamic parameters are in agreement with the K CT values in that the enthalpy of formation (−ΔH) has a larger value in ANDC than in AN, suggesting higher stability of the complex in ANDC. The complex formed between 2AP and DHBQ has been isolated as a solid and characterized using elemental analysis, FTIR, and 1H NMR measurements. Moreover, it has been found that the formed complex involves proton transfer in addition to charge transfer.  相似文献   

7.
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in less polar solvent is high. The stoichiometry of the complex was found to be 1: 1 ratio by straight line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K CT), molar extinction coefficient (?CT), standard free energy (ΔG°), oscillator strength (f), transition dipole moment (μEN), resonance energy (R N) and ionization potential (I D). The results indicate that the formation constant (K CT) for the complex were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used.  相似文献   

8.
Charge transfer (CT) interaction between 5-amino-2-methoxypyridine (5AMPy), as electron donor (proton acceptor), with 3,6-dichloro-2,5-dihydroxy-p-benzoquinone (chloranilic acid, H2CA), as electron acceptor (proton donor), has been investigated spectrophotometrically in the polar protic solvents ethanol (EtOH) and methanol (MeOH) and the aprotic one acetonitrile (AN). Pink-coloured solution is formed instantaneously upon mixing 5AMPy with H2CA solutions in all solvents, which is the hallmark evidence of CT complex formation. Based on Job’s method of continuous variations, as well as spectrophotometric titrations, the stoichiometry of the complex was found to be 1:1 [(5AMPy) (H2CA)] in all solvents. Benesi–Hildebrand equation has been applied to estimate the formation constant of the produced CT complex (KCT) and its molar absorptivity (ε), they reached high values, confirming the complex high stability. Solid CT complex has been synthesised and analysed by elemental analyses and FTIR, 1H NMR spectroscopies, where 2:1 [(5AMPy)2 (H2CA)] CT complex was obtained.  相似文献   

9.
The behaviour of the inclusion complex consisting of cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) in water/n-butanol mixture was studied using ion selective electrodes sensitive to surfactant ions. The experiments were carried out at different temperatures and different composition of water/alcohol. The data obtained indicate that the inclusion complexes S(CD) and S(CD)2 had formed between CTAB and β-CD in water/alcohol mixture environment. In addition to the 1 : 1 complex, CTAB formed 1 : 2 complexes with β-CD. Further investigation showed that K 1 for S(CD) was greater than K 2 for S(CD)2, and the values of Ki were reduced with increasing butanol concentration. Finally, thermodynamic parameters of the complexation, i.e. ΔH°, ΔG° and ΔS° were also calculated. The obtained thermodynamic data showed that the hydrophobic interaction is the main factor for inclusion complex formation and tendency of complex formation has been reduced with increasing of medium hydrophobicity.  相似文献   

10.
A new water-soluble Co(II) Schiff-base complex, sodium[{N,N′-bis(5-sulfosalicylidene)-1,8-diamino-3,6-dioxaoctan}cobalt] dihydrate, abbreviated as Na2[Co(II)L], was synthesized and characterized. The formation constants and thermodynamic parameters for the interaction of this complex with imidazole (Im) and 1-methylimidazole (MeIm) were determined spectroscopically in aqueous solution, ethanol/water (10/90), and methanol/water (10/90) under physiological conditions (pH?=?7), constant ionic strength (I?=?0.1?mol?dm?3 KNO3), and various temperatures ranging from 294 to 310?K. Our spectroscopic and thermodynamic results show that this adduct formation is endothermic and the positive values of ΔS f° make ΔG f° negative. The trend in variation of ΔH f° and ΔS f° for Im is in the order water?>?methanol?>?ethanol, but for MeIm it is in the opposite order which is related to the hydrogen bonding between solvents and these donors. Formation constants between MeIm and Na2[Co(II)L] in these three solvents are larger than for Im which depends on the electron donation of methyl on MeIm.  相似文献   

11.

The UV-visible absorption bands of the charge transfer (CT) complex of N, N, N', N'-tetramethyl-4,4'-diamino-benzophenone with iodine in methanol at 30°C have been studied. The value of KAD , ?AD and E CT were calculated for this complex. The value of the equilibrium constant, KAD , for the above complex reaction was calculated as 28.85m3·mol?1. The value of the molar extinction coefficient of the CT complex, ?AD , was also calculated as 1171m2·mol?1 for λmax = 602 nm and the absorption band energy E CT of the complex was found to be 2.06 e.v. The ionization potential of the electron donor was also obtained spectroscopically and found to be 6.284 e.v. The rate constant obtained for the forward reaction is 3.624 x 10?5M1/2s?1 and for the reverse reaction is 1.256 x 10?6s?1. Finally, the half-life value for the above reaction was graphically calculated and shown to be 1.549 day. The kinetics of the above reaction were studied showing the reaction to be a half-order reaction. The values of rate constants and half-life were calculated.  相似文献   

12.
The complex formation reaction between N,N′-bis(2-pyridylmethylidene)-1,2-diiminoethane (BPIE) di-Schiff base ligand as an electron donor and iron(III) chloride as an electron acceptor have been studied spectrophometrically in methanol at 28°C. The values of equilibrium constants, K and molar absorptivities, ε were obtained from the Benesi–Hildebrand, Scott and Foster–Hammick–Wardley equations. The results indicate the formation of 1?:?1 charge transfer complex. The absorption band energy of the complex, E CT, the ionization potential of the BPIE Schiff base ligand, I D, and the Gibbs energy changes of the above reaction, ΔG 0, were calculated. Finally, the kinetics of the complex formation reaction were studied and was found to be second-order in each reactant. The values of the rate constants of the forward and reverse reactions k 1 and k ?1 were determined.  相似文献   

13.
It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge-transfer (CT) complexation reaction. By studying the trimethylated-benzene–I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.  相似文献   

14.
Charge transfer (CT) complexes formed between 2-amino-4-methylpyridine as electron donor, chloranilic acid as electron acceptor was investigated spectrophotometrically in acetonitrile (AN), methanol (MeOH) and binary mixture of acetonitrile 50% + methanol 50% (MeOH-AN). Minimum–maximum absorbance method has been used for estimating the formation constants of the CT reactions (KCT). Job’s method of continuous variation and photometric titration studies were used to detect the stoichiometric ratios of the formed complexes, and they showed that 1:1 complexes were produced. The molar extinction coefficient (e), oscillator strength (f), dipole moment (l), CT energy (ECT), ionisation potential (IP) and the dissociation energy (W) of the formed complexes were estimated; they reached acceptable values suggesting the stability of the formed CT complexes. The solid CT complexes were synthesised and characterised by elemental analyses, 1H NMR and FTIR spectroscopies where the formed complexes included proton and electron transfer.  相似文献   

15.
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (KCT), molar extinction coefficient (?CT), standard free energy (ΔGo), oscillator strength (f), transition dipole moment (μEN), resonance energy (RN) and ionization potential (ID). The results indicate that the formation constant (KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.  相似文献   

16.
It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge‐transfer (CT) complexation reaction. By studying the trimethylated‐benzene–I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.  相似文献   

17.
The vicinal H-H coupling constant in the AB2 spectrum, JAB, of 1, 1, 2-trisubstituted ethanes of the type XCH2-CHX2 has been measured in the medium of various solvents and at several different temperatures over the range of 238°-368°K. Based on rotational averaging and on the simple model of internal rotation about the C-C bond, a refiend Karplus equation for the vicinal coupling constant could yield the analytical expression which describes an explicit functional dependence of the vicinal coupling constant on internal rotation parameters, and permits evaluation of ΔE, the energy difference between rotamers, at any fixed temperature. For neat 1, 1, 2-trichloroethane ΔE was found to keep constant over the range of temperature variation studied, while in the case of neat 1, 1, 2-tribromoethane ΔE increases with increasing temperature in the same temperature range. In contrast to a small temperature effect a much pronounced medium effect on ΔE was observed for both 1, 1, 2-tribromoethane and 1, 1, 2-trichloroethane. At any fixed temperature ΔE decreases as dielectric constant of the solvent increases.  相似文献   

18.
The complexation reaction of dibenzo-18-crown-6 (DB18C6) with ZrO2+ cation was studied in some binary solvent solutions of acetonitrile (AN), 1,2 dichloroethane (DCE), nitromethane (NM) and ethylacetate (EtOAc) with methanol (MeOH), at different temperatures by conductometry method. The stability constant of the resulting 1:1 complex at each temperature was determined using a computer fitting conductance-mole ratio data. The results revealed that, the (DB18C6·ZrO)2+ complex is more stable in the EtOAc–MeOH binary mixed solvents compared with the other binary mixed solvent solutions. A non-linear relationship was observed for changes of log?Kf of (DB18C6·ZrO)2+ complex versus the composition of the binary mixed solvents. The corresponding standard thermodynamic parameters (ΔH c ° , ΔS c ° ) were obtained from temperature dependence of the stability constant. The results show that the (DB18C6·ZrO)2+ complex is enthalpy destabilized but entropy stabilized and the values along with the sign of these parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

19.
The oxidative addition of BF3 to a platinum(0) bis(phosphine) complex [Pt(PMe3)2] ( 1 ) was investigated by density functional calculations. Both the cis and trans pathways for the oxidative addition of BF3 to 1 are endergonic (ΔG°=26.8 and 35.7 kcal mol?1, respectively) and require large Gibbs activation energies (ΔG°=56.3 and 38.9 kcal mol?1, respectively). A second borane plays crucial roles in accelerating the activation; the trans oxidative addition of BF3 to 1 in the presence of a second BF3 molecule occurs with ΔG° and ΔG° values of 10.1 and ?4.7 kcal mol?1, respectively. ΔG° becomes very small and ΔG° becomes negative. A charge transfer (CT), F→BF3, occurs from the dissociating fluoride to the second non‐coordinated BF3. This CT interaction stabilizes both the transition state and the product. The B?F σ‐bond cleavage of BF2ArF (ArF=3,5‐bis(trifluoromethyl)phenyl) and the B?Cl σ‐bond cleavage of BCl3 by 1 are accelerated by the participation of the second borane. The calculations predict that trans oxidative addition of SiF4 to 1 easily occurs in the presence of a second SiF4 molecule via the formation of a hypervalent Si species.  相似文献   

20.
The complex formation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ metal cations with macrocyclic ligand, 4′-nitrobenzo-15C5, were studied in acetonitrile (AN)-methanol (MeOH) binary mixtures at different temperatures using conductometric method. The results show that 4′-nitrobenzo-15C5 forms 1:1 [ML] complexes with Mg2+, Ca2+ and Sr2+ metal cations in solutions. But in the case of Ba2+ cation a 1:2 [ML2] complex is formed in these solvent systems. The stability of the complexes is sensitive to the solvent composition and a non-linear behavior was observed for variation of logK f of the complexes versus the composition of the binary mixed solvents. The stability constants of complexes decrease suddenly with increasing the concentration of methanol in this binary system. The values of thermodynamic parameters (ΔH c° and ΔS c°) for formation of (4′-nitrobenzo-15C5.Mg)2+, (4′-nitrobenzo-15C5.Ca)2+ and (4′-nitrobenzo-15C5.Sr)2+ complexes were obtained from temperature dependence of the stability constants and the results show that these parameters are affected by the nature and composition of the mixed solvents. A non-linear behavior is observed between the ΔS c° and the composition of the mixed solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号