首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper briefly reviews anode phenomena in vacuum arcs, specially experimental work. It discusses, in succession, arc modes at the anode, anode temperature measurements, anode ions, transitions of the arc into various modes (principally the anode spot mode), and theoretical explanations of anode phenomena. The two most common anode modes in a vacuum arc are a low current mode where the anode is basically passive, acting only as a collector of particles emitted from the cathode, and a high current mode with a fully developed anode spot. Characteristically this anode spot has a temperature near the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material may emit a flux of sputtered atoms from the anode. Usually this sputtered flux will have little effect upon the vacuum arc, but in certain circumstances it could be significant. A vacuum arc doesn't always transfer directly from a low current mode to the anode spot mode. In appropriate experimental conditions, formation of an anode spot may be preceded by the formation of an anode footpoint. This footpoint is luminous, but much cooler than a true anode spot. Finally, (again in appropriate circumstances) several small anode spots may form instead of one large anode spot. With sufficient increase in arc current or arcing time these will usually combine to form a single large active spot.  相似文献   

2.
Five possible discharge modes can exist at the anode of a vacuum arc. The two most common anode modes are a low current mode, where the anode is basically inert; and a high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. Three additional anode modes can occur in appropriate circumstances. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. At intermediate currents, an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot.  相似文献   

3.
This paper discusses arc modes at the anode, anode temperature measurments, anode ions, transitions of the arc into various modes (principally the anode-spot mode), and theoretical explanations of anode phenomena. A vacuum arc can exhibit five anode discharge modes: 1) a low-current mode in which the anode is basically passive, acting only as a collector of particles emitted from the cathode; 2) a second low-current mode that can occur if the electrode material is readily sputtered (a flux of sputtered atoms will be emitted by the anode); 3) a footpoint mode, characterized by the appearance of one or more luminous spots on the anode (footpoints are much cooler than the true anode spots present in the last two modes); 4) an anode-spot mode in which one large or several small anode spots are present (such spots are very luminous, have a temperature near the atmospheric boiling point of the anode material, and are a copious source of vapor and ions); and 5) an intense-arc mode where an anode spot is present, but accompanied by severe cathode erosion. The arc voltage is relatively low and quiet in the two low-current modes and the intense-arc mode. It is usually high and noisy in the footpoint mode, and it can be either in the anode-spot mode. Anode erosion is low, indeed negative, in the two low-current modes, and it is low to moderate in the footpoint mode. Severe anode erosion occurs in both the anode-spot and intense-arc modes.  相似文献   

4.
This paper discusses are modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. A vacuum are can exhibit five anode discharge modes: (1) a low current mode in which the anode is basically passive, acting only as a collector of particles emitted from the cathode; (2) a second low current mode that can occur if the electrode material is readily sputtered (a flux of sputtered atoms will be emitted by the anode); (3) a footpoint mode, characterized by the appearance of one or more small luminous spots on the anode (footpoints are generally much cooler than the true anode spots present in the last two modes); (4) an anode spot mode in which one large or several small anode spots are present (such spots are very luminous, have a temperature near the atmospheric boiling point of the anode material, and are a copious source of vapor and ions); and (5) an intense are mode where an anode spot is present, but accompanied by severe cathode erosion. The are voltage is relatively low and quiet in the two low current modes and the intense are mode. It is usually high and noisy in the footpoint mode, and it can be either in the anode spot mode. Anode erosion is low, indeed negative, in the two low current modes, and it is low to moderate in the footpoint mode. Severe anode erosion occurs in both the anode spot and intense are modes. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum are being considered. In specific experimental conditions, either magnetic constriction in the gap plasma, or gross anode melting, or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma.  相似文献   

5.
This paper reports about experimental investigations on high-current vacuum-arc phenomena, especially anode-spot formation, arc states, and motion. The presented work was stimulated by lack of information about the transition process from the diffuse low-current mode to the high-current mode characterized by anode spot(s). Optoelectronic measurements, streak photographs, high-speed movies, and correlated arc voltage/current records yielded remarkable results on power-frequency vacuum arcs. Three different high-current vacuum arc modes can be observed beyond a certain threshold current. Which mode appears depends mainly on the momentary electrode distance. The modes are characterized by different anode-spot behavior and interelectrode phenomena. The transition between different arc modes is continuous. The arc modes observed on ring electrodes producing a magnetic blast field are the same as those appearing on butt-type electrodes. Anode-spot formation is preceded by congregations of cathode spots and may be initiated by thermal overload of the anode surface opposite to these cathode-spot clusters.  相似文献   

6.
This paper summarizes recent experimental data related to anode phenomena in both vacuum and atmospheric pressure arcs. Currents in the range 10A to 3OkA are discussed, and particular emphasis is placed on the effect of plasma flow from the cathode. For vacuum arcs this plasma flow is the directed motion of metal ions from the cathode spots. These ions reduce the anode voltage drop, and maintain a diffuse anode termination. At atmospheric pressure the ion flow is impeded by gas-atom collisions. However, a plasma flow towards the anode can result from magnetic pinch forces at the constricted cathode termination. In the absence of plasma flow, the anode termination constricts to a vigorously evaporating anode spot. For a typical non-refractory electrode such as copper, the spot operates at a temperature close to the boiling point irrespective of the gas pressure. The spot temperature is dictated by the balance between electrical input power and evaporative losses. These anode phenomena are discussed in relation to vacuum switchgear, arc welding and arc furnaces.  相似文献   

7.
The ion behavior phenomenon associated with transitions of the anode discharge mode to the anode-spot mode is studied by measuring the wall ion current and by spectroscopic observation in vacuum arcs. The anode mode transfers when the wall ion current attains a certain magnitude that is independent of the cathode, but dependent on the anode. The ion-current function to the arc current increases when the arc current increases in the diffuse arc. Spectral-line intensity of Cu III emitted from the plasma in the anode region increases with an instantaneous arc current of a 5-kA peak (kAp) sinusoidal half-wave. These findings suggest an idea for the mode transition, that an ion generation region appears, and that an increase in the ion density produces a positive potential hump near the anode, which results in the negative anode voltage drop triggering the mode transition. After the mode transition, an arc current is found to reduce the ion current near the crest of a sinusoidal current in a copper arc. This appears to be significant for the arc on a small anode. The decrease in the ion current is attributed to the recombination of ions decelerated by anode vapor with electrons emitted from the hot spot on the anode  相似文献   

8.
The variation of threshold current for the transition between the low current quiescent vacuum arc mode, and the high voltage noisy mode associated with anode spot formation, was measured as a function of peak current, current waveform frequency, and electrode separation on fixed diameter (25 mm) Cu and Ni electrodes. At current waveform frequencies of about 60 Hz on Cu electrodes, the threshold current depends mainly on electrode spacing, as has been observed by other investigators. However, at higher waveform frequencies, the threshold current becomes a strong function of peak current as well. At 347 Hz on 25 mm. diam. Cu electrodes separated by 10 mm, the threshold current rose from approximately 2 kA to 5.5 kA, as the peak current rose from 2 kA to 6 kA. At 543 Hz on 25 mm diam Ni electrodes separated by 9 mm, a saturation in threshold current at about 7.5 kA was observed for peak currents greater than 9 kA. Simultaneous anode temperature measurements indicated that the Ni anode surface temperature immediately prior to transition rose from about 1550° K to 2250° K with variations of peak current from 5 kA to 13 kA. Predictions of the variation of threshold current based on random transitions, and on cathode spot migration over the edge of the cathode, are compared with the experimental data.  相似文献   

9.
We have clarified the relation between the decay of tungsten ion density in the vicinity of current zero and vacuum arc mode in high current period by using a laser induced fluorescence method in tungsten vacuum arcs of 60 Hz sinusoidal current with the peak value of 3.3, 6.7, and 9.8 kA. In the case of 6.7 kA, the arc mode was the anode spot mode. Because of the generation of the anode spot, the tungsten ion density near the anode was higher than near the cathode and the density near the anode was about ten times as high as the case of 3.3 kA which was the diffuse mode. In the case of 9.8 kA, which was the intense arc mode, the density near the anode was not significantly different from the case of 6.7 kA. The density near the cathode was higher than near the anode and tungsten ions were observed till about 30 μs after current zero while they disappeared at current zero in the other cases  相似文献   

10.
A critical analysis of available experimental data and models of an anode spot formation shows their insufficiency for developing a clear-cut physical model of anode processes in a high-current vacuum arc. Based on new results of studying an anode medium- and low-pressure arc region, a qualitative physical model of an anode spot formation in a vacuum arc is proposed. The main idea of the model is that a change of the sign of the anode voltage drop (from negative to positive) is a necessary condition for an anode spot formation. Experimental data are qualitatively discussed from the point of view of the proposed model.  相似文献   

11.
Twenty-five years of progress in vacuum arc research andutilization   总被引:1,自引:0,他引:1  
Progress in understanding and applying vacuum arcs is reviewed. Laser diagnostics have demonstrated the existence of micron-sized regions in the cathode spot plasma having electron densities exceeding 1026 m-3. The expanding plasma produces a highly ionized jet whose ions typically have charge states of 1-3 and energies of 50-150 eV. Gas dynamic and explosive emission models have been formulated to explain cathode spot operation. In cases where the arc is constricted at the anode, forming an anode spot, or the anode is thermally isolated, forming a hot anode vacuum arc, material emitted from the anode may dominate the interelectrode plasma. Evaporation from liquid droplets may also provide a substantial component of the plasma, and the presence of these droplets can have deleterious consequences in applications. The vacuum arc has been extensively utilized as a plasma source, particularly for the deposition of protective coatings and thin films, and as a switching medium in electrical distribution circuit breakers  相似文献   

12.
This article presents the results of research on the photographic appearance of a highcurrent vacuum arc between butt type copper electrodes a of 30–80 mm diameter and a fixed gap of 10 mm. Current pulses of up to 30 kA peak amplitude at an initial value of (di/dt)0 from 1–10kA/ms and a duration of approximately 14 ms were applied. Arcs were photographed with a high-speed framing camera, mostly at 104 frames/s. A detailed study of discharge modes in phase transition from a high-current diffuse arc to a constricted arc with an anode spot was conducted. Most of the measurements were obtained at a peak current slightly in excess of 10 kA for electrodes of 55 mm diameter. It was found that at peak current exceeding moderately the threshold value of the onset of anode spot formation, the arc is characterized by the following main features: the formation of an anode spot and an anode plasma jet occurs concurrently with a local concentration of cathode spots; the anode spot is, most often, formed on the electrode edge; the coexistence of very varied structures of spots on the cathode; the lack of considerable constriction of the cathode discharge; the pseudo-periodic shrinking and expansion of the area occupied by cathode spots; the existence of a relatively dark space separates the anode plasma jet from the plasma sheath near the cathode surface; the plasma space distribution in the interelectrode gap is non-uniform and non-stationary.This work was supported by State Committee for Scientific Research within the research project No. 3 P40101507.  相似文献   

13.
At high current, the performance of triggered vacuum gaps (TVGs) is limited by constriction of the vacuum arc. Several concentrated modes can be defined, i.e., foot point, anode spot, and intense arc mode. In all cases, small, luminous, high-temperature spots (from melting to boiling temperature) appear on the anode surface. In accordance with the anodic mode, the arc voltage has different characteristics (quiet and low or with high-frequency noise). The arc voltage is measured for different electrode configurations for a conduction time of 27 μs and for peak current up to 45 kA. For small gap distances (1-1.5 mm), the arc voltage is quiet and low (20 to 30 V) and almost independent of the peak current. For greater distances, the arc voltage increases with the distance and the peak current. If the peak current is higher than the threshold interruption current, the arc voltage is high and noisy. These overvoltages, with a frequency of about one megahertz, can reach more than 1000 V. These overvoltages disappear completely after about 15 μs, and the voltage decreases  相似文献   

14.
As vacuum arcs subjected to a magnetic field parallel to their positive column (an axial magnetic field) spread uniformly over all the electrodes and burn in the interelectrode region, arc voltages of these arcs are low and quiescent. When the magnetic field strength decreases, however, the arc voltage develops a large noise component and electrode melting occurs. Experiments were conducted to investigate the condition of these transition phenomena. As a result of these experiments, it was found that these two phenomena do not always occur simultaneously and that a new explanation for the mechanism of anode spot formation should be considered.  相似文献   

15.
The evaporation instability model for anode spot formation in high-current vacuum arcs shows one severe deficiency: it needs a critical vapor density at the anode, that is by two orders of magnitude higher than the measured value. The discrepancy can be bridged, if it is assumed that due to the relatively cool anode a low vapor pressure exists near the anode and thus the self magnetic field constricts the arc in the vicinity of the anode considerably. In consequence, the vapor density is higher near the anode than far away from that electrode. The mathematical analysis of that model shows that the predicted constriction near the anode exists indeed. The vapor density obtained at the anode surface is by more than two orders of magnitude higher than in the column and the absolute value is high enough to start the anode spot instability due to evaporation of the anode. The model shows that neither a pure magnetic constriction model nor a pure anode evaporation model can account for the effects observed, but that both effects contribute considerably to the phenomenon of anode spot formation in high-current vacuum arcs.  相似文献   

16.
真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响,对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制.然而,磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因,无法有效地应用于真空电弧等离子体射流仿真模拟.本文开发了一套三维等离子体混合模拟算法,并在此基础上建立了真空电弧单阴极斑点射流仿真模型,模型中将离子作宏粒子考虑,而电子作无质量流体处理,仿真计算了自生电磁场与外施纵向磁场作用下等离子体的分布运动状态.仿真结果表明,单个阴极斑点情况下真空等离子体射流在离开阴极斑点后扩散至极板间,其整体几何形状为圆锥形,离子密度从阴极到阳极快速下降.外施纵向磁场会压缩等离子体,使得等离子体射流径向的扩散减少并且轴线上的离子密度升高.随着外施纵向磁场的增大,其对等离子体射流的压缩效应增强,表现为等离子体射流的扩散角度逐渐减小.此外,外施纵向磁场对等离子体射流的影响也受到电弧电流大小的影响,压缩效应随电弧电流的增加而逐渐减弱.  相似文献   

17.
真空弧离子源在真空镀膜、材料表面改性、真空大电流开关、加速器离子注入等领域有广泛应用,目前国内外对真空弧放电等离子体的研究主要针对纯金属或合金电极,对含氢电极的研究和公开报道较少.本文利用高时空分辨的四分幅图像诊断系统,结合氢和钛原子特征线单色器件,研究了含氢钛电极的真空弧微秒级脉冲放电等离子体的轴向和径向时空分布特性.研究表明:在真空击穿阶段,阳极区域发光更为明显,阳极电极解吸附释放的氢原子是引发击穿的主要放电介质;在真空弧阶段,阴极-绝缘-真空三结合点处产生圆锥状阴极斑,喷射出大量的等离子体以维持弧放电,同时电极内壁非阴极斑区域也有少量等离子体产生,等离子体中H原子的轴向和径向空间分布均比Ti原子均匀.  相似文献   

18.
Our new vacuum arc control technology SADE doubles the high current interruption capability of our conventional axial magnetic field technology. First, we describe the vacuum arc motion behavior recorded by a high speed charge-coupled device video camera. This arc behavior is closely related to axial magnetic field intensity. In particular, it depends on the profile of the externally generated axial magnetic field. The anode spot is likely to move to the highest magnetic field intensity. Second, we describe analytical results for concentration of vacuum arc at the anode side contact surface. This analysis implies the possibility of an ideal magnetic field profile and intensity for vacuum arc control. Finally, we describe experimental results for vacuum arc control compared with the physical and theoretical results mentioned above, and we show a practical electrode configuration for vacuum interrupters and its application in a high current interruption experiment  相似文献   

19.
It is well known that the melting of electrodes (mainly anode melting) in vacuum arc can increase the metal vapor density around current zero and even lead to interruption failure. In order to clarify the anode activities and their influence on arc appearance and interruption capacity, series experiments of cup-shaped axial magnetic field copper electrodes were conducted. Obvious anode melting was detected; the liquid copper flowed on the contact plate of anode and formed a clockwise swirl flow. The appearance of anode melting is likely to correlate to the transition of arc mode from high-current diffuse mode to high-current diffuse column mode. The melting of anode was severer than cathode and was influenced by the distribution of cathode spots. Various kinds of copper particles at macroscopic level can be seen in arc column. Even at the interruption limit, the majority of melted copper of anode sputtered out of gap in form of liquid droplets or was pressed into the cup of anode, the copper vapor evaporated into arc column only accounted for a few portion and no obvious anode jets was found due to large plasma pressure in arc column.   相似文献   

20.
Two types of short metal-vapour arcs between closely spaced noble-metal electrodes are distinguished: the anode and the cold cathode arc. Examination of electrode damage due to low-current (2-10A) field-emission-breakdown arcs and inductive break arcs in atmospheric air has led to the observation of two phenomena apparently contradicting to each other, firstly the existence of Germer's critical electrode distance and secondly, the occurrence of a steady transition from the anode to the cathode type with increasing arc duration. The physical interpretation of this are behaviour communicated in this report is based on the appearance of internal ionization instabilities of the self-sustained plasma-cathode system of the fast moving cold cathode spot for electrode separations near the axial extent of the spot ionization region. The concept includes the question of arc striking mechanism and a model of arc evolution with arc time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号