首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of ruthenium(III) with N,N'-disalicylidene-l,2-phenylenediamine (H2dsp), N,N'-disalicylidene-3,4-diaminotoluene (H2dst), 4-nitro-N,N'-disalicylidene-1,2-phenylenediamine (H2ndsp) and N,N'-disalicylidene ethylenediamine (H2salen) have been prepared and characterized by elemental analysis, molar conductivity, spectral methods (mid-infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that all these complexes are non-electrolytes. The electronic spectra measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The four ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   

2.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

3.
A new series of Fe (III), Co (II), Zn (II), Y (III), Zr (IV) and La (III) complexes derived from the novel ligand 4-(4-Isopropyl phenyl)-2-oxo-6-phenyl 1,2-dihyropyridine-3-carbonitrile (L) were synthesized and characterized. The mode of bonding of L and geometrical structures of their metal complexes were elucidated by different micro analytical and spectral methods (FT-IR,UV–visible,1H NMR and Mass spectra) as well as thermal analysis (TG and DTG), and differential scanning calorimetry (DSC). The results of analytical and spectroscopic equipments revealed that L acts as bidentate through nitrogen of carbonitrile group and oxygen of keto group. The conductivity measurement results deduced that these chelates are electrolyte with 1:2 for Co (II), Zn (II), and Zr (IV) and 1:3 for Fe (III), Y (III), and La (III). The results of magnetic moment measurements supported paramagnetic for some complexes (Fe (III), Co (II) and Cu (II)) and diamagnetic phenomena for the other complexes (Y (III), Zr (IV) and La (III)). Thermodynamic parameters such as energy of activation E*, entropy ΔS*, enthalpy ΔH* and Gibss free energy ΔG* were calculated using Coats-Redfern and Horowitz-Metzeger methods at n = 1 or n#1. Some results of bioactivity tests for ligands and their metal complexes were recorded against Gram-positive, Gram-negative bacteria and antifungal. The complexes showed significant more than free ligand.  相似文献   

4.
Compounds having general formula: [M(FO)(Cl)(x)(H(2)O)(y)].zH(2)O, where (M=Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), FO=folate anion, x=2 or 4, y=2 or 4 and z=0, 1, 2, 3, 5 or 15) were prepared. The obtained compounds were characterized by elemental analysis, infrared as well as electronic spectra, thermogravimetric analysis and the conductivity measurements. The results suggested that all folate complexes were formed by 2:1 molar ratio (metal:folic acid) as a bidentate through both of the two carboxylic groups. The molar conductance measurements proved that the folate complexes are electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* were estimated from the DTG curves. The antibacterial evaluation of the folic acid and their complexes was also done against some Gram positive/negative bacteria as well as fungi.  相似文献   

5.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

6.
Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.  相似文献   

7.
This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.  相似文献   

8.
A convenient method for the preparation of complexes of the Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, ZrO2+, UO2(2+), Zr4+ and Th4+ ions with caproic acid (Hcap) is reported and this has enabled 10 complexes of caproate anion to be formulated: [Cr(cap)3].5H2O, [Mn(cap)2(H2O)2], [Fe(cap)3].12H2O, [Co(cap)2(H2O)2].4H2O, [Ni(cap)2(H2O)2].3H2O, [Zn(cap)2], [ZrO(cap)2].3H2O, [UO2(cap)(NO3)], [Zr(cap)2(Cl)2] and [Th(cap)4]. These new complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. It has been found from the elemental analysis as well as thermal studies that the caproate ligand behaves as bidentate ligand and forming chelates with 1:1 (metal:ligand) stoichiometry for UO2(2+), 1:2 for (Mn2+, Co2+, Ni2+, Zn2+, ZrO2+ and Zr4+), 1:3 stoichiometry for (Cr3+ and Fe3+) and 1:4 for Th4+ caproate complexes, respectively, as bidentate chelating. The molar conductance measurements proved that the caproate complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The antibacterial activity of the caproic acid and their complexes was evaluated against some gram positive/negative bacteria.  相似文献   

9.
The interaction of tin(II) and tin(IV) chlorides with norfloxacin (NOR) has been investigated. Elemental analysis, infrared, mass spectra and thermal analysis have been used to characterize the isolated solid complexes. The results support the formation of complexes with the formula [Sn(NOR)2]Cl2·4H2O and [Sn(NOR)3]Cl4. The infrared spectra of the isolated solid complexes suggested that NOR act as bidentate ligand through the carbonyl oxygen atom and one oxygen atom of the carboxylic group forming six-membered rings with the tin ions. The interpretation, mathematical analysis and evaluation of kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, pre-exponential factors, activation energy evaluated by using Coats–Redfern and Horowitz–Metzger equations are carried out for two complexes. The data obtained indicate that the two complexes decompose in one stage and general mechanisms describing the decomposition are suggested. Furthermore, the electronic, and 1H?NMR spectra have been studied.  相似文献   

10.
A new Schiff base, H2L, was prepared by condensation of 4,6-diacetylresorcinol with o-phenylenediamine in molar ratio 1?:?1. The ligand reacted with copper(II), nickel(II), cobalt(II), iron(III), zinc(II), oxovanadium(IV), and dioxouranium(VI) ions in the absence and presence of LiOH to yield mononuclear and homobinuclear complexes. The mononuclear dioxouranium(VI) complex [(HL)-(UO2)(OAc)(H2O)]·5H2O was used to synthesize heterobinuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H-, and 13C-NMR, electronic, ESR and mass spectra, conductivity, and magnetic susceptibility measurements as well as thermal analysis. In the absence of LiOH, mononuclear complexes (1, 4, and 9) were obtained; in the presence of LiOH, binuclear complexes (3, 5, 7, and 10) as well as mononuclear complexes (2, 6, and 8) were obtained. In the mononuclear complexes, the coordinating sites are the phenolic oxygen, azomethine nitrogen, and amino nitrogen. In addition to these coordinating sites, the free carbonyl and phenolic OH are involved in coordination in binuclear complexes. The metal complexes exhibited octahedral, tetrahedral, and square planar geometries while the uranium is seven-coordinate. The antimicrobial and antioxidant activities of the ligand and its complexes were investigated. The ligand and the metal complexes showed antitumor activity against Ehrlich Acites Carcinoma.  相似文献   

11.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

12.
Mn(II), Co(II), and Cu(II) complexes with novel heterocyclic ligands derived from anthranilic acid and its 5-bromo derivative with ethyl-2-thionylpyruvate were synthesized and characterized by means of elemental analysis, molar conductivity, spectral methods (IR, 1H NMR, and UV-Vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The IR spectra of the two ligands and their complexes were used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, ΔH*, ΔS*, and ΔG* were estimated from the DTG curves. New ligands and their complexes have been tested for their possible antibacterial and antifungal activity.  相似文献   

13.
A series of new coordination complexes of La(III) and Pr(III) with hydrazones, derived from 1,1-diacetylferrocene and different aromatic acid hydrazides have been synthesized and characterized by elemental analyses, electrical conductance, magnetic moment, IR, (1)H NMR, UV-vis spectra and molar conductance. The thermal behaviour of the complexes under non-isothermal condition was investigated by TG and DTG techniques. The antifungal activity of hydrazones and their corresponding complexes were also investigated.  相似文献   

14.
Mononuclear mixed ligand complexes of Ni(II) and Ce(III) with 4-(-3-methoxy-4-hydroxybenzylideneamino)-1,3-dimethyl-2,6-pyrimidine-dione, 2-aminopyridine and 8-hydroxyquinoline have been prepared. The elemental analysis, molar conductance, spectral (IR, mass and solid reflectance), magnetic moment measurements and thermal study were utilized to investigate the coordination behavior. All metal complexes have metal-to-ligand ratios of 1:1:1 and the modes of bonding are consistent with N- and O-donation suggesting monomeric octahedral and square planar structures. The thermal behavior of these complexes was investigated and the thermal decomposition pathways postulated. The activation thermodynamic parameters, E*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of the complexes were calculated using the Coats-Redfern equation. Antibacterial and antifungal properties of the metal complexes have also been examined against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Pseudomonas fluorescens (S 97), Pseudomonas phaseolicola (GSPB 2828), Fusarium oxysporum and Aspergillus fumigatus. The highest antimicrobial activity was observed for the Ce(III) complex, [CeL(8-Oqu)(NO3)2]·1½H2O.  相似文献   

15.
The synthesis and structural characterization of mixed ligand complexes derived from 2,6-pyridinedicarboxaldehydebis(o-hydroxyphenylimine), 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine) (1(ry) ligands) and 2-aminopyridne (2(ry) ligand) are reported. The ligands and their transition metal complexes were characterized on the bases of their elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The mixed ligand complexes are formed in the 1:1:1 (M:L(1) or L(2):L') ratio as found from the elemental analyses and found to have the formulae [MX(2)(L(1) or L(2))(L')].nH(2)O where M = Co(II), Ni(II), Cu(II) and Zn(II), L(1) = 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine), L(2) = 2,6-pyridine dicarboxaldehydebis(o-hydroxyphenylimine), L' = 2-aminopyridine, X = Cl(-) in case of Cu(II) complex and Br(-) in case of Co(II), Ni(II) and Zn(II) complexes and y = 0-3. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. While 2-aminopyridine coordinated to the metal ions via its pyridine-N. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes are found to be octahedral. The thermal behaviour of these chelates shows that the hydrated water molecules and the anions are removed in a successive two steps followed immediately by decomposition of the ligands (L(1), L(2) and L') in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves and discussed. The ligands and their metal chelates have been screened for their antimicrobial activities and the findings have been reported, explained and compared with some known antibiotics.  相似文献   

16.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

17.
Three iron(III) complexes (1-3) of 2-benzoylpyridine N(4)-phenyl thiosemicarbazone (HL1) and one iron(III) complex (4) of 2-benzoylpyridine N(4)-cyclohexyl thiosemicarbazone (HL2) were synthesized and characterized by means of different physicochemical techniques viz., molar conductivity measurements, magnetic susceptibility studies and electronic, infrared and EPR spectral studies. The analytical data and the molar conductance measurements of the complexes reveal that two molecules of the ligand and the anion are coordinated to the metal atom in all the four complexes. The magnetic moments of the complexes suggest that they are of low spin. From the infrared spectra of the ligands and the complexes it is confirmed that the ligands coordinate to iron(III) as an anion coordinating via the azomethine nitrogen, pyridyl nitrogen, and the thiolate sulphur. The EPR spectra of the complexes in the polycrystalline state at 298 and 110 K and in DMF solution at 110 K were recorded and all the spectra show three g values indicating that these complexes have rhombic distortion. All the iron(III) complexes in DMF solution at 110 K have similar anisotropic spectra with almost the same gav values, indicating that the bonding in all the complexes is similar and is unaffected by the coordination of the anion.  相似文献   

18.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

19.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

20.
Ru(III), Rh(III), Pt(IV) and Ir(III) complexes of 2-furfural thiosemicarbazone as ligand have been synthesised. These complexes have the composition [M(ligand)2X2]X (M = Ru(III) Rh(III) and Ir(III) X = Cl and Br) and [Pt(ligand)2 X2] X2 (X = Cl, Br and 1/2SO4). The deprotonated ligand forms the complexes of the formulae M(ligand-H)3 and Pt(ligand-H)3Cl. All these complexes have been characterized by elemental analysis, magnetic measurements, electronic and infrared spectral studies. All the complexes are six-coordinate octahedral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号