首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李勇  卓琦又  何录武 《力学季刊》2019,40(1):106-114
基于BGK碰撞模型,通过在迁移方程中引入作用力项,建立了粘弹流体的轴对称格子Boltzmann模型.通过Chapman-Enskog展开,获得了准确的柱坐标下轴对称宏观流动方程.采用双分布函数对运动方程和本构方程进行迭代求解,模拟分析了粘弹流体管道流动,获得了流场中的速度和构型张量的分布,通过与解析解进行比较,验证了模型的准确性.研究了作为粘弹流体流动基准问题的收敛流动,对涡旋位置进行了定量分析,将回转长度的计算结果与有限体积法进行了比较,两种数值结果十分吻合.研究结果表明,模型能够准确表征粘弹流体的轴对称流动,具有较广阔的应用前景.  相似文献   

2.
Numerical modeling of shallow water flows over discontinuous beds is presented. The flows are described with the shallow water equations and the equations are solved using the lattice Boltzmann method (LBM) with single relaxation time (Bhatnagar–Gross–Krook‐LBM (BGK‐LBM)) and the multiple relaxation time (MRT‐LBM). The weighted centered scheme for force term together with the bed height for a bed slope is described to improve simulation of flows over discontinuous bed. Furthermore, the resistance stress is added to include the local head loss caused by flow over a step. Four test cases, one‐dimensional tidal over regular bed and steps, dam‐break flows, and two‐dimensional shallow water flow over a square block, are considered to verify the present method. Agreements between predictions and analytical solutions are satisfactory. Furthermore, the performance and CPU cost time of BGK‐LBM and MRT‐LBM are compared and studied. The results have shown that the lattice Boltzmann method is simple and accurate for simulating shallow water flows over discontinuous beds. This demonstrates the capability and applicability of the lattice Boltzmann method in modeling shallow water flows on bed topography with a discontinuity in practical hydraulic engineering. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a thermal lattice BGK model is developed for the Boussinesq incompressible fluids. The basic idea is to solve the velocity field and the temperature field using two independent lattice BGK equations, respectively, and then combine them into one coupled model for the whole system. The porous plate problem and the two‐dimensional natural convection flow in a square cavity with Pr=0.71 and various of Rayleigh numbers are simulated using the model. The numerical results are found to be in good agreement with the analytical solutions or those of previous studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we introduce a finite‐volume kinetic BGK scheme and its applications to the study of roll and solitary waves. The current scheme is based on the numerical solution of the gas‐kinetic Bhatnagar–Gross–Krook model in the flux evaluation across each cell interface. An intrinsic connection between the BGK model and time‐dependent, non‐linear, non‐homogeneous shallow‐water equations enables us to solve shallow‐water equations automatically with our kinetic scheme. The analytical solution, experimental measurements, and numerical calculations for problems associated with roll‐waves down an inclined open channel and solitary waves incident on a sloped beach are also presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Numerical methods for the Baer–Nunziato model of compressible two‐phase flow have attracted much attention in recent years. In this paper, a two‐phase Bhatnagar–Gross–Krook (BGK) model is constructed in which the non‐conservative terms in the Baer–Nunziato model are considered as the external forces and the collisions both with particles of their phases and other phases are taken into consideration. On the basis of this BGK model, the so‐called modified Baer–Nunziato model is derived and a gas‐kinetic scheme for this modified model is presented. The distribution functions are constructed at the cell interface based on the integral solutions of the BGK equations for both phases. Then, numerical fluxes can be obtained by taking moments of the distribution functions, and non‐conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the iterative processes in the exact Riemann solvers are eliminated but also the collisions with the particles of other phases are taken into account. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the unified simplified velocity distribution function equation adapted to various flow regimes can be presented. The reduced velocity distribution functions and the discrete velocity ordinate method are developed and applied to remove the velocity space dependency of the distribution function, and then the distribution function equations will be cast into hyperbolic conservation laws form with non‐linear source terms. Based on the unsteady time‐splitting technique and the non‐oscillatory, containing no free parameters, and dissipative (NND) finite‐difference method, the gas kinetic finite‐difference second‐order scheme is constructed for the computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature methods are developed to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm for the gas dynamical problems from various flow regimes is developed. To test the reliability of the present numerical method, the one‐dimensional shock‐tube problems and the flows past two‐dimensional circular cylinder with various Knudsen numbers are simulated. The computations of the related flows indicate that both high resolution of the flow fields and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
A linearization is developed for Mieussens's discrete velocity model (see, e.g., [L. Mieussens, Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys. 162 (2000) 429–466]) for kinetic equations. The basic idea is to use a linearized expression of the reference distribution function in the kinetic equation, instead of its exact expression, in the numerical scheme. This modified scheme is applied to various kinetic models, which include the BGK model, the ES-BGK model, the BGK model with velocity-dependent collision frequency, and the recently proposed ES-BGK model with velocity-dependent collision frequency. One-dimensional stationary shock waves and stationary planar Couette flow, which are two benchmark problems for rarefied gas flows, are chosen as test examples. Molecules are modeled as Maxwell molecules and hard sphere molecules. It is found that results from the modified scheme are very similar to results from the original Mieussens's numerical scheme for various kinetic equations in almost all tests we did, while, depending on the test case, 20–40 percent of computational time can be saved. The application of the method is not affected by the Knudsen number and molecular models, but is restricted to lower Mach numbers for the BGK (or the ES-BGK) model with velocity-dependent collision frequency.  相似文献   

9.
The axisymmetric flows with swirl or rotation were solved by a hybrid scheme with lattice Boltzmann method for the axial and radial velocities and finite‐difference method for the azimuthal (or swirl) velocity and the temperature. An incompressible axisymmetric lattice Boltzmann D2Q9 model was proposed to solve the axial and radial velocities through inserting source terms into the two‐dimensional lattice Boltzmann equation. Present hybrid scheme was firstly validated by simulations of Taylor–Couette flows between two concentric cylinders. Then the benchmark problems of melt flow in Czochralski crystal growth were studied and accurate results were obtained. Numerical experiment demonstrated that present axisymmetric D2Q9 model is more stable than the previous axisymmetric D2Q9 model (J. Comp. Phys. 2003; 186 (1):295–307). Hence, compared with the previous model, present numerical method provides a significant advantage in simulation melt flow cases with high Reynolds number and high Grashof number. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT‐LABSWETM). The model is based on the two‐dimensional nonlinear shallow water equations, giving the depth‐averaged features. It is verified by applying the model in three typical cases in engineering with turbulence: (i) the flow around a square cylinder, (ii) plane cavity flow, and (iii) flows in a junction of 90°. The results obtained by the MRT‐LABSWETM are compared with BGK‐LABSWETM results and experimental data. The objectives of this study are to validate the MRT‐LABSWETM in a turbulence simulation and perform a comparative analysis between the results of BGK‐LABSWETM and MRT‐LABSWETM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
An immiscible liquid–liquid multiphase flow in a cross‐junction microchannel was numerically studied using the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introducing surface tension force based on the continuum surface force (CSF) method. Recoloring step was replaced by the anti‐diffusion scheme in the mixed region to reduce the side‐effect and control the thickness of the interface. The present method was tested by the simulation of a static bubble. Laplace's law and spurious velocities were examined. The results show that our model is more advantageous for simulations of immiscible fluids than the existing immiscible lattice BGK models. Computational results of multiphase flow in a cross‐junction microchannel were obtained and analyzed based on dimensionless numbers. It is found that the flow pattern is decided mostly by the capillary number at a small inlet flux. However, at the same capillary number, a large inlet flux will lead to much smaller droplet generation. For this case, the flow is determined by both the capillary number and the Weber number. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A two-fluid model of gas–solid particle flows that is valid for a wide range of the solid-phase volume concentration (dilute to dense) is presented. The governing equations of the fluid phase are obtained by volume averaging the Navier–Stokes equations for an incompressible fluid. The solid-phase macroscopic equations are derived using an approach that is based on the kinetic theory of dense gases. This approach accounts for particle–particle collisions. The model is implemented in a control-volume finite element method for simulations of the flows of interest in two-dimensional, planar or axisymmetric, domains. The chosen mathematical model and the proposed numerical method are applied to three test problems and one demonstration problem. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Predicting unsteady flows and aerodynamic forces for large displacement motion of microstructures requires transient solution of Boltzmann equation with moving boundaries. For the inclusion of moving complex boundaries for these problems, three immersed boundary method flux formulations (interpolation, relaxation, and interrelaxation) are presented. These formulations are implemented in a 2‐D finite volume method solver for ellipsoidal‐statistical (ES)‐Bhatnagar‐Gross‐Krook (BGK) equations using unstructured meshes. For the verification, a transient analytical solution for free molecular 1‐D flow is derived, and results are compared with the immersed boundary (IB)‐ES‐BGK methods. In 2‐D, methods are verified with the conformal, non‐moving finite volume method, and it is shown that the interrelaxation flux formulation gives an error less than the interpolation and relaxation methods for a given mesh size. Furthermore, formulations applied to a thermally induced flow for a heated beam near a cold substrate show that interrelaxation formulation gives more accurate solution in terms of heat flux. As a 2‐D unsteady application, IB/ES‐BGK methods are used to determine flow properties and damping forces for impulsive motion of microbeam due to high inertial forces. IB/ES‐BGK methods are compared with Navier–Stokes solution at low Knudsen numbers, and it is shown that velocity slip in the transitional rarefied regime reduces the unsteady damping force. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Two approximate solutions to the kinetic equations for a gas mixture undergoing reversible bimolecular chemical reactions are presented. A conservative discrete ordinates method is compared to a conservative BGK approximation of the reactive Boltzmann equations. Features and performances of the two methods on both microscopic and macroscopic scales are investigated.  相似文献   

15.
The study of axisymmetric flows is of interest not only from an academic point of view, due to the existence of exact solutions of Navier–Stokes equations, but also from an industrial point of view, since these kind of flows are frequently found in several applications. In the present work the development and implementation of a finite element algorithm to solve Navier–Stokes equations with axisymmetric geometry and boundary conditions is presented. Such algorithm allows the simulation of flows with tangential velocity, including free surface flows, for both laminar and turbulent conditions. Pseudo‐concentration technique is used to model the free surface (or the interface between two fluids) and the k–ε model is employed to take into account turbulent effects. The finite element model is validated by comparisons with analytical solutions of Navier–Stokes equations and experimental measurements. Two different industrial applications are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
介绍了气体动理学格式(GKS)的基本构造原理及其在两种典型多尺度流动模拟中的应用。GKS利用介观BGK方程的跨尺度演化解来构造网格界面上的数值通量,从而发展出能随计算网格尺度变化自动切换物理模型的多尺度方法。对湍流这种宏观多尺度流动,发展了高精度GKS方法并成功用于低雷诺数湍流的直接数值模拟;为实现对高雷诺数湍流的高效精细模拟,基于拓展BGK方程和已有的RANS,LES模型建立了新型多尺度模拟框架。对跨流域稀薄流动,发展了适合大规模并行的三维统一气体动理学格式(UGKS),并建立了适合轴对称稀薄流动的UGKS。研究表明,GKS在多尺度流动高效模拟中的优异性能,具有很好的发展前景。  相似文献   

17.
A lattice Boltzmann model with higher‐order accuracy for the wave motion is proposed. The new model is based on the technique of the higher‐order moment of equilibrium distribution functions and a series of lattice Boltzmann equations in different time scales. The forms of moments are derived from the binary wave equation by designing the higher‐order dissipation and dispersion terms. The numerical results agree well with classical ones. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A finite volume, Boltzmann Bhatnagar–Gross–Krook (BGK) numerical model for one‐ and two‐dimensional unsteady open channel flows is formulated and applied. The BGK scheme satisfies the entropy condition and thus prevents unphysical shocks. In addition, the van Leer limiter and the collision term ensure that the BGK scheme admits oscillation‐free solutions only. The accuracy and efficiency of the BGK scheme are demonstrated through the following examples: (i) strong shock waves, (ii) extreme expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) one‐ and two‐dimensional dam break problems. These test cases are performed for a variety of Courant numbers (Cr), with the only condition being Cr≤1. All the computational results are free of spurious oscillations and unphysical shocks (i.e., expansion shocks). In addition, comparisons of numerical tests with measured data from dam break laboratory experiments show good agreement for Cr≤0.6. This reduction in the stability domain is due to the explicit integration of the friction term. Furthermore, BGK schemes are easily extended to multidimensional problems and do not require characteristic decomposition. The proposed scheme is second‐order in both space and time when the external forces are zero and second‐order in space but first‐order in time when the external forces are non‐zero. However, since all the test cases presented are either for zero or small values of external forces, the results tend to maintain second‐order accuracy. In problems where the external forces become significant, it is possible to improve the order of accuracy of the scheme in time by, for example, applying the Runge–Kutta method in the integration of the external forces. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A two-dimensional (2D) model of a granular medium is represented as a square lattice consisting of elastically interacting round particles possessing one rotational and two translational degrees of freedom. The differential equations describing propagation and interaction of waves of various types in such a medium have been derived in the long-wavelength approximation. Accounting for microrotations of the particles and moment interactions between them leads to the consideration of so-called microrotation waves (spin waves). In the absence of microrotations, the governing equations degenerate into 2D Lamé equations for anisotropic media. A one-to-one correspondence has been established between the microstructure parameters and effective elasticity constants of the second-order. Dependence of elasticity constants on the size of grains has been analyzed. The proposed model is compared in the continuous approximation to the equations of the 2D Cosserat continuum possessing macroscopic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号