首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

2.
This research deals with comparison of the activity of various Rh catalysts in the polymerization of monosubstituted acetylenes and the effect of various amines used in conjunction with [Rh(nbd)Cl]2 in the polymerization of phenylacetylene. A zwitterionic Rh complex, Rh+(nbd)[(η6‐C6H5)B?(C6H5)3] ( 3 ), was able to polymerize phenylacetylene ( 5a ), t‐butylacetylene ( 5b ), N‐propargylhexanamide ( 5c ) and n‐hexyl propiolate ( 5d ), and displayed higher activity than the other catalysts examined, that is [Rh(nbd)Cl]2 ( 1 ), [Rh(cod)(Oo‐cresol)]2 ( 2 ), and Rh‐vinyl complex ( 4 ). Monomers 5a and 5c polymerized virtually quantitatively or in fair yields with all these catalysts, while monomer 5b was polymerizable only with catalyts 3 and 4 . Monomer 5d did not polymerize in high yields with these Rh complexes. The catalytic activity tended to decrease in the order of 3 > 4 > 2 > 1 . Although polymerization of 5a did not proceed at all in toluene with [Rh(nbd)Cl]2 alone, it smoothly polymerized in the presence of various amines as cocatalysts. The polymerization rate as well as the molecular weight of polymer depended on the basicity and steric bulkiness of amines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4530–4536, 2005  相似文献   

3.
In this work, the geometrical and electronic properties of the mono cationic ionic liquid 1‐hexyl‐3‐methylimidazolium halides ([C6(mim)]+_X?, X=Cl, Br and I) and dicationic ionic liquid 1,3‐bis[3‐methylimidazolium‐1‐yl]hexane halides ([C6(mim)2X2], X=Cl, Br and I) were studied using the density functional theory (DFT). The most stable conformer of these two types ionic liquids (IL) are determined and compared with each other. Results show that in the most stable conformers, in both monocationic ILs and dicationic ILs, the Cl? and Br? anions prefer to locate almost in the plane of the imidazolium ring whereas the I? anion prefers nearly vertical location respect to the imidazolium ring plan. Comparison of hydrogen bonding and ionic interactions in these two types of ionic liquids reveals that these ionic liquids can be formed hydrogen bond by Cl? and Br? anion. The calculated thermodynamic functions show that the interaction of cation — anion pair in the dicationic ionic liquids are more than monocationic ionic liquids and these interactions decrease with increasing the halide anion atomic weight.  相似文献   

4.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

5.
5‐Ethynyl‐2,2′‐bipyridine ( 1 ; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [ 2 ; (bpyC?CH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene ( 3 ) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005  相似文献   

6.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

7.
3‐Ethynylthiophene (3ETh) was polymerized with Rh(I) complexes: [Rh(cod)acac], [Rh(nbd)acac], [Rh(cod)Cl]2, and [Rh(nbd)Cl]2 (cod is η22‐cycloocta‐1,5‐diene and nbd η22‐norborna‐2,5‐diene), used as homogeneous catalysts and with the last two complexes anchored on mesoporous polybenzimidazole (PBI) beads: [Rh(cod)Cl]2/PBI and [Rh(nbd)Cl]2/PBI used as heterogeneous catalysts. All tested catalyst systems give high‐cis poly(3ETh). In situ NMR study of homogeneous polymerizations induced with [Rh(cod)acac] and [Rh(nbd)acac] complexes has revealed: (i) a transformation of acac ligands into free acetylacetone (Hacac) occurring since the early stage of polymerization, which suggests that this reaction is part of the initiation, (ii) that the initiation is rather slow in both of these polymerization systems, and (iii) a release of cod ligand from [Rh(cod)acac] complex but no release of nbd ligand from [Rh(nbd)acac] complex during the polymerization. The stability of diene ligand binding to Rh‐atom in [Rh(diene)acac] catalysts remarkably affects only the molecular weight but not the yield of poly(3ETh). The heterogeneous catalyst systems also provide high‐cis poly(3ETh), which is of very low contamination with catalyst residues since a leaching of anchored Rh complexes is negligible. The course of heterogeneous polymerizations is somewhat affected by limitations arising from the diffusion of monomer inside catalyst beads. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2776–2787, 2008  相似文献   

8.
The pseudo‐square‐planar complexes [Rh(cod)(Hbbtm)]BF4 ( 3 ), [Rh(bbte)(cod)]BF4 ( 4 ), [Rh(CO)2(Hbbtm)]BF4 ( 5 ), [Rh(bbte)(CO)2]BF4 ( 6 ), [Rh(bbtm)(cod)] ( 7 ) and [Rh(bbtm)(CO)2] ( 8 ) (Hbbtm=bis(benzothiazol‐2‐yl)methane=2,2′‐methylenebis[benzothiazole], bbte=bis(benzothiazol‐2‐yl)ethane=2,2′‐(ethane‐1,2‐diyl)bis[benzothiazole], and cod=cycloocta‐1,5‐diene) were synthesized and characterized. Diastereotopic protons were observed for the protons at the bridge in the 1H‐NMR of 3 and 5 . Twisting of the ethane‐1,2‐diyl bridge in 4 and 6 effects chemical equivalence of the CH2 groups in solution. Unusually large downfield shifts occur on coordination of the deprotonated ligand Hbbtm as the negative charge is delocalized in 7 and 8 . The NMR signals of the cod ligand in 4 could be differentiated. The X‐ray crystal structures of 3, 4 , and 6 are reported.  相似文献   

9.
Preparation and Catalytic Properties of Rhodium(I) Complex Salts of the Type [Rh(COD)(o-Py(CH2)2 P(Ph)(CH2)3ZR)]PF6 (Z = O, NH) . In dichloromethane solutions were reacted [Rh(COD)Cl]2 (COD = cis,cis-1.5-cyclooctadiene) with each of the four new ligands of the type o-Py(CH2)2P(Ph)(CH2)3ZR in the presence of the halogen scavenger TIPF6 at 0°C to complex salts [Rh(COD) (o-Py(CH2)2P(Ph)(CH2)3ZR]PF6 (ZR = OC2H5, I ; OPh, II ; NHPh, III ; NHcyclo? C6H11, IV ). The Rh1 complex cation in the obtained compounds I – IV coordinates besides the bedentate COD group the ligand donor atoms P und pyridinic N and the remaining donor atom Z is uncoodinated in an assumed square planar ligand geometry at the Rh central atom. In 1.4 dioxane solutions the complex catalysts I – IV polymerize at 25°C the substrate phenylacetylene (PA) to polyphenylacetylene (PPA): values of TON [h?1] between 352 ( I ) and 876 ( IV ), and average molecular weights Mw (GPC measurements) between 238 000 ( I ) and 199 900 ( IV ). These given values exhibit a dependency on the ZR group in complexes I – IV . The microstructure of isolated PPA is cis-transoidal. It is formed stereospezific and, based on MNDO calculations, is thermodynamically favoured. For the purpose of comparison, from both the newly synthesized compounds of the type [Rh(COD)DBN- (or DBU)Cl] (DBN = 1.5-Diazabi-cyclo[4.3.0.]non-5-en, DBU = 1.8-Diazabicycl0[5.4.0]- undec-7-en) was obtained a larger value of TON with 1292 (or 1327) [h?], but a lower value of M, with 166200 (or 131200). These catalysts including I –IV polymerize PA to PPA at a lower reaction temperature with improved selectivity and larger values of Mw as hitherto known catalyst systems.  相似文献   

10.
Owing to numerous new applications, the interest in “task‐specific” ionic liquids increased significantly over the last decade. But, unfortunately, the imidazolium‐based ionic liquids (by far the most frequently used cations) have serious limitations when it comes to modifications of their properties. The new generation of ionic liquids, called tunable aryl–alkyl ionic liquids (TAAILs), replaces one of the two alkyl chains on the imidazolium ring with an aryl ring which allows a large degree of functionalization. Inductive, mesomeric, and steric effects as well as potentially also π π and π π+ interactions provide a wide range of possibilities to tune this new class of ILs. We investigated the influence of electron‐withdrawing and ‐donating substituents at the para‐position of the aryl ring (NO2, Cl, Br, EtO(CO), H, Me, OEt, OMe) by studying the changes in the melting points of the corresponding bromide and bis(trifluoromethanesulfonyl)imide, (N(Tf)2), salts. In addition, we calculated (B3LYP/6‐311++G(d,p)) the different charge distributions of substituted 1‐aryl‐3‐propyl‐imidazolium cations to understand the experimentally observed effects. The results indicated that the presence of electron‐donating and ‐withdrawing groups leads to strong polarization effects in the cations.  相似文献   

11.
The regiodivergent C?H borylation of 2,5‐disubstituted heteroarenes with bis(pinacolato)diboron was achieved by using iridium catalysts formed in situ from [Ir(OMe)(cod)]2/dtbpy (cod=1,5‐cyclooctadiene, dtbpy: 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine) or [Ir(OMe)(cod)]2/2 AsPh3. When [Ir(OMe)(cod)]2/dtbpy was used as the catalyst, borylation at the 4‐position proceeded selectively to afford 4‐borylated products in high yields (dtbpy system A). The regioselectivity changed when the [Ir(OMe)(cod)]2/2 AsPh3 catalyst was used; 3‐borylated products were obtained in high yields with high regioselectivity (AsPh3 system B). The regioselectivity of borylation was easily controlled by changing the ligands. This reaction was used in the syntheses of two different bioactive compound analogues by using the same starting material.  相似文献   

12.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Manganese(II) complex catalysts with hydrotris(pyrazolyl)borate ligands have been examined on their catalytic performance in ethylene polymerization and ethylene/1‐hexene copolymerization. The activities of [Mn(L6)(Cl)(NCMe)] ( 1 ) and [Mn(L10)(Cl)] ( 2 ) activated by Al(i‐Bu)3/[Ph3C][B(C6F5)4] for ethylene polymerization go up to 326 and 11 kg mol (cat?1) h?1, respectively, (L6? = hydrotris(3‐phenyl‐5‐methyl‐1‐pyrazolyl)borate anion, L10? = hydrotris(3‐adamantyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In particular, for ethylene/1‐hexene copolymerization, complex 1 gives high‐molecular‐weight poly(ethylene‐co‐1‐hexene)s with the highest Mw of 439,000 in manganese olefin polymerization catalyst systems. Moreover, the 1‐hexene incorporation by complex 1 seems more efficient than that by [Mn(L3)(Cl)] ( 4 ) (L3? = hydrotris(3‐tertiary butyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In this work, we demonstrated that the coordination geometry and coordination number are also important factors for ethylene polymerization reaction as well as steric hindrances and ligand frameworks in our manganese(II) catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5720–5727, 2009  相似文献   

14.
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. Reaction of [Ph2PNHCH2‐C4H3S] with [Ru(η6‐benzene)(µ‐Cl)Cl]2, [Rh(µ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(µ‐Cl)Cl]2 gave a range of new monodendate complexes [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, [Rh(Ph2PNHCH2‐C4H3S)(cod)Cl], 2, and [Ir(Ph2PNHCH2‐C4H3S)(η5‐C5Me5)Cl2], 3, respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 1H? 31P NMR, 1H? 13C HETCOR or 1H? 1H COSY correlation experiments were used to confirm the spectral assignments. 1–3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 30 min at 82 °C (TOF ≤200 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Anhydrous conductive membranes composing of a composite of chitosan (CS) and ionic liquids with symmetrical carboxyl groups were explored. Scanning electron microscope images revealed that porous composite membranes could be obtained by combining CS with different amounts of 1,4‐bis(3‐carboxymethyl‐imidazolium)‐1‐yl butane chloride ([CBIm]Cl). Fourier transform infrared and proton nuclear magnetic resonance confirmed that the formation of ammonium salts after CS was combined with [CBIm]Cl. The thermal property of CS–ionic liquid composite membranes was studied through thermogravimetric analysis. The anhydrous ionic conductivities of CS–[CBIm]X (X = Cl, Ac, BF4, and I) composite membranes were measured using ac impedance spectroscopy at room temperature in N2 atmosphere. The conductivities (0.4–0.7 × 10?4 Scm?1), found to be in the same range as semiconductors, were significantly higher than those of pure CS membrane (<10?8 Scm?1). In addition, the anhydrous conductivity of composite membrane based on CS–[CBIm]I at room temperature reached a level as high as 0.91 × 10?2 Scm?1 when iodine was doped. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In the 1,4‐addition of phenylboronic acid to α,β‐unsaturated ketones, [Rh(OH)(cod)]2 has a much higher catalytic activity than [Rh(OH)(binap)]2 (cod=1,5‐cyclooctadiene, binap=2,2′‐bis(diphenylphosphanyl)‐1,1′‐binaphthyl). Kinetic studies revealed that the rate‐determining transmetalation step in the catalytic cycle has a large rate constant when [Rh(OH)(cod)]2 is used.  相似文献   

17.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

18.
Magnetic ionic liquid monomers were synthesized and then polymerized to get magnetic polymer latexes and films. First, a series of 1‐vinyl‐3‐dodecyl‐imidazolium monomers having metal halides counter‐anions such as FeCl3Br?, CoCl2Br?, and MnCl2Br? were synthesized. These ionic liquid monomers were first homopolymerized to lead to magnetic poly(ionic liquids) and characterized. Secondly, magnetic latexes were synthesized by using the magnetic ionic liquids as surfmers (surfactant + monomer) in the emulsion polymerization of methyl methacrylate/n‐butyl acrylate. It was found that the powders obtained by freeze‐drying the latexes presented a paramagnetic behavior with weak antiferromagnetic interactions between the adjacent metal ions. Although the ratio of magnetic ionic liquid/monomer was only 2% these poly(methyl methacrylate‐co‐butyl acrylate) powders and latexes responded to a magnetic field due to the surfmer paramagnetic nature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1145–1152  相似文献   

19.
Direct catalytic addition of alkylnitriles to aldehydes allows for an atom‐economical access to β‐hydroxynitriles under proton transfer conditions. Direct use of alkylnitriles as pronucleophiles has been hampered due to their low acidity resulting in an inability to generate α‐cyano carbanions in a catalytic manner. A transition metal/N‐heterocyclic carbene (NHC) complex prepared from [{Rh(OMe)(cod)}2] and an imidazolium‐based carbene was identified as an effective catalyst to promote the reaction with as little as 1.25 mol % of catalyst loading. The corresponding Rh complex, derived from chiral triazolium salt, rendered the reaction enantioselective, albeit with moderate enantioselectivity.  相似文献   

20.
The polymerization of phenylacetylene with the microheterogeneous Ti(OR)4? AlEt3 and homogeneous vanadium acetylacetonate/aluminum triethyl Ziegler–Natta catalyst systems was analyzed. The effects of some cocatalysts (e.g., pyridine and phenylacetylide) and the solvent, temperature, and time were analyzed. Both catalyst systems produced poly(phenylacetylene) (PPA) and a 1,2,4‐triphenylbenzene (1,2,4‐TPB)/1,3,5‐triphenylbenzene (1,3,5‐TPB) cyclotrimer mixture in various molar ratios. The titanium catalyst showed the lowest PPA/triphenylbenzene ratio. The 1,2,4‐TPB/1,3,5‐TPB molar ratio decreased with increasing PPA. On the basis of the spectroscopic data, PPA had a cis–transoidal stereoregular structure. The molecular mass of PPA was determined with vapor pressure osmometry and gel permeation chromatography. A mechanism for the polymerization reaction versus cyclotrimerization was proposed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1228–1237, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号