首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bis(N, N′‐dialkyldithiocarbamato)antimony(III) alkylenedithiophosphates of the type [R2NCS2]2 SbS(S)POGO [where NR2 = N(CH3)2, N(C2H5)2 and N(CH2)4; G = ? CH2? C(C2H5)2? CH2? , ? CH2? C(CH3)2? CH2? , ? CH(CH3)? CH(CH3)? and ? C(CH3)2? C(CH3)2? ] were synthesized and characterized by physico‐chemical, spectral [UV, IR and NMR (1H, 13C and 31P)] and thermal (TG, DTA and DSC) analysis. The TG decomposition analysis step of the complex indicated the formation of Sb2S3 as the final product. The first endothermic peak in DSC indicated the melting point of the complexes. These complexes were screened for their antimicrobial activities using the disk diffusion method. All the complexes showed good activity as antibacterial and antifungal agents on some selected bacterial and fungal strains, which increased on increasing the concentration. Chloroamphenicol and terbinafin were used as standards for comparison. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Mixed sulfur donor ligand complexes of the type bismuth(III) bis(N,N‐dialkyldithiocarbamato) alkylenedithiophosphate, [R2NCS2]2BiS2POGO [where R = CH3 and C2H5; G = ‐CH2‐C(C2H5)2‐CH2‐, ‐CH2‐C(CH3)2‐CH2‐, ‐CH(CH3)‐CH(CH3)‐ and ‐C(CH3)2‐C(CH3)2‐] were synthesized in 1:1 molar ratio of bismuth(III) bis(N,N‐dialkyldithiocarbamate) chloride and ammonium alkylenedithiophosphate in refluxing benzene and characterized by melting point, molecular weight determinations, elemental analysis (C, H, N, Bi and S) and spectral [UV, IR,NMR (1H,13C and 31P) and powder X ray diffraction] studies; all these studies were in good agreement with the synthesized complexes. These newly synthesized derivatives are yellow and brown colored solids and are soluble in common organic solvents like benzene, chloroform, dichloromethane and DMF. Based on the physicochemical and spectral studies, a tentative structure of these newly synthesized complexes was assigned and the average particle size of the synthesized complexes determined by powder XRD, showing that nano range polycrystalline particles were formed with a monoclinic crystal system. These complexes were also screened for their antimicrobial activities using the well diffusion method. The free ligands as well as their mixed metal complexes were tested in vitro against four bacterial strains: two Gram‐positive, Staphylococcus aureus (ATCC 9144) (G+) and Bacillus subtilis (ATCC 6051), (G+) and two Gram‐negative, Escherichia coli (ATCC 9637) (G?) and Pseudomonas aeruginosa (ATCC 25619) (G?) to assess their antimicrobial properties. The results were indeed positive and exhibited good antibacterial effects. Chloroamphenicol used as a standard for comparison and synthesized complexes showed good antibacterial effects over chloroamphenicol. On the basis of these studies, the synthesized complexes help to understand the different structural and biological properties of main group elements with sulfur donor ligands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Some mixed bis(morpholine‐4‐dithiocarbamato‐S,S′)antimony(III) complexes [(OC4H8NCS2)2SbL] with oxygen or sulfur donor ligands [L = ―OOCCH3 ( 1 ), ―OOCC6H5 ( 2 ), ―SOCCH3 ( 3 ), ―SCH2COOH ( 4 ), ―OOCC6H4(OH) ( 5 ), ―SCH2CH2CH3 ( 6 ), ―OC6H5 ( 7 ), ½ ―SCH2CH2S― ( 8 )] have been synthesized by reacting the chloro‐bis(morpholine‐4‐dithiocarbamato‐S,S′)antimony(III) with corresponding oxygen or sulfur donor ligands in 1:1 or 2:1 stoichiometries. These have been characterized by melting point, molecular weight determination (cryoscopically), antimony (iodometrically) and sulfur (gravimetrically) estimation, elemental analyses (C, H and N), UV–visible, FT‐IR, far IR, multinuclear NMR (1H and 13C)], TG/DTA analysis, ESI–mass and powder X‐ray diffraction studies. The splitting of the strong band observed at 1046–1066 cm?1 due to υ(C―S) indicated anisobidentate mode of binding of the dithiocarbamate group, which was further supported by a 13C NMR signal appearing at around δ 200 due to NCS2 moiety. The base peak observed at m/z 444.9 supports the strong chelating nature of the morpholine‐4‐dithiocarbamate compared to the other hetero ligands used. TGA revealed that, complexes 21 and 4 were decomposed in three steps; also 6 was decomposed in two steps, followed by the formation of Sb2S3. The results obtained by antimicrobial screening tests indicate that complex 3 showed a maximum zone of inhibition (20 mm) against Trichoderma ressie at a concentration of 200 µg ml?1. Complexes 2 , 3 and 8 are most active (zone of inhibition (ZI) 17–20 mm) against both of the fungal species Aspergillus niger and Trichoderma ressie as well as complex 4 (ZI 17 mm) and 6 (ZI 18 mm) against Trichoderma ressie. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
1H and 13 C NMR spectral data of 13 new compounds containing a 4‐(dimethylamino)‐ or 4‐(pyrrolidin‐1‐yl)pyridinium moiety linked to the N‐9 or N‐3 nitrogen atom of an adenine moiety were assigned. 1D and 2D NMR experiments (DEPT, HSQC and HMBC) allowed the unequivocal identification of N‐9 and N‐3 isomers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A 1H, 13C and 31P NMR study of monoethyl (HL1) and monobutyl (HL2) esters of (α‐anilinobenzyl)phosphonic acid and their metallocyclic dipalladium complexes (Pd2L4,L = L1, L2) in DMSO‐d6 was performed, based on 1D and 2D homo‐ and heteronuclear experiments including 1H,13C,31P,APT,1H–1H COSY, 1H–13C COSY, gs‐HMQC and gs‐HMBC NMR techniques. The results obtained are discussed with respect to those for some palladium(II) complexes reported for various anilinobenzylphosphonate derivatives. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
A brief account of the synthesis, spectroscopic characterization and the antimicrobial (bacterial and fungal) behaviour of bis(diorganodithiocarbamato)organodithiocarbonatobismuth(III) complexes is presented. The reaction of bis(diorganodithiocarbamato)bismuth(III) chloride with potassium organodithiocarbonate in equimolar ratio yielded the corresponding mixed derivatives of the type [R′2NCS2]2BiS2COR [where, R′ = CH3 and C2H5; R = Et, Prn, Pri, Bun and Bui]. These have been characterized by molecular weight determinations, melting points (only solid complexes) and elemental (C, H, N, S and Bi) analysis as well as spectral IR and NMR [1H and 13C] studies. The antibacterial and antifungal activities of the free ligands and their bismuth complexes were found in vitro by the disc diffusion method. The complexes showed good antibacterial and antifungal effect on some selected bacterial and fungal strains. The antimicrobial activities of two standard antibiotics (Chloroamphenicol and Terbinafin) were also measured and compared with these complexes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The 1H and 13C NMR resonances of seventeen N‐alkyl and aryl‐N′‐[3‐hydroxy‐3‐(2‐nitro‐5‐substitutedphenyl)propyl]‐thioureas and ureas ( 1–17 ), and seventeen N‐alkyl or aryl‐N′‐[3‐(2‐amino‐5‐substitutedphenyl)‐3‐hydroxypropyl]‐thioureas and ureas ( 18–34 ), designed as NOS inhibitors, were assigned completely using the concerted application of one‐ and two‐dimensional experiments (DEPT, HSQC and HMBC). NOESY studies confirm the preferred conformation of these compounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Newly synthesized mixed bis(O,O′‐diisopropyldithiophosphato‐S,S′)antimony(III) derivatives have been characterized using physicochemical, spectral, thermal and powder X‐ray diffraction studies, and their antimicrobial activities were investigated. These derivatives have nanometric crystallite size (11.39–14.67 nm) with unit cell volume (4968.47 and 5079.79 Å3) and lower symmetry (monoclinic) crystal system. After thermal decomposition in inert atmosphere, these derivatives give antimony sulfide as a final decomposition product which has many potential applications, and they exhibit enhanced antimicrobial activities (greater zone of inhibition) as compared to the free ligands and standard drugs (chloroamphenicol and terbinafine were used as standard antibacterial and antifungal drugs, respectively) due to the nanometric size of the complexes.  相似文献   

10.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

11.
The complete multinuclear 1H, 13C, 31P and 19F NMR data of symmetrically substituted amines containing N,N‐dialkyl‐P‐alkyl phosphonamidic fluorides are presented. Assignment was achieved, using various one‐and two‐dimensional NMR experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
NMR spectra of a series of N‐arylsuccinanilic acids, N‐arylsuccinimides, N‐arylmaleanilic acids, and N‐arylmaleimides were examined to estimate the electronic effect of the amide and imide groups on the chemical shifts of the hydrogen and carbon nuclei of the benzene ring. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Unsymmetrical, dialkyl‐substituted N,N‐dialkyl‐N‐acyl(aroyl)thioureas show E,Z configurational isomerism at room temperature in solution, which is also expressed in the existence of cis‐[Pt(ZZ‐L‐S,O)2], cis‐[Pt(EZ‐L‐S,O)2] and cis‐[Pt(EE‐L‐S,O)2] complexes derived from these ligands. These configurational isomers were assigned by means of a double magnetization transfer 1H/13C/195Pt correlation NMR experiment, despite the fact that the long‐range 5J(195Pt, 1H) and 4J(195Pt, 13C) scalar couplings are not directly observable in their 1H and 13C spectra at high field. Depending on the ligand structure, the relative amounts of cis‐[Pt(ZZ‐L‐S,O)2], cis‐[Pt(EZ‐L‐S,O)2] and cis‐[Pt(EE‐L‐S,O)2] complexes are in the ranges 40–42% ZZ, 46–47% ZE and 12–13% EE. The cis‐bis[N‐methyl‐N‐(tert‐butyl)‐N‐(2,2‐dimethylpropanoyl)thioureato]platinum(II) complex is found to occur exclusively as the ZZ isomer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Spectroscopical Properties of Di(phthalocyaninato)metalates(III) of the Rare Earth Elements. Part 2: The Multinuclear (1H, 13C, 15N, 17O, and 31P) NMR Spectra and Determination of Complex Bound Water The 1H, 13C, 15N, 17O and 31P NMR spectra of (PNP)[Ln(Pc2?)2] and (TDOA)[Ln(Pc2?)2] (Ln = La …? (—Pm) …? Lu); PNP: di(triphenylphosphine)-iminium; TDOA: Tri(n-dodecyl)n-octylammonium dissolved in CD2Cl2 are reported. With the exception of the nitrogen atoms of the cations all light atoms of both homologues complex salt rows have been detected and assigned. Proof of the presence of additional water contained in the (solid) complex salts has been given unambigously. The otherwise strong Fermi contact interactions diminuish rapidly with growing distance from the paramagnetic centre favouring dipolar (pseudo-contact) interactions. As a consequence the mostly element independent paramagnetic shifts of the atoms situated on the periphery of the anion as well as those of the cations and water are determined by the distance factor. Therefore a first glance of the structure of the ion-pair present in solution emerges, in which the water molecule seems to play an important role.  相似文献   

15.
Synthesis, spectroscopic characterization and thermal behavior of pyrazolate-bridged palladium complexes [Pd(μ-Pz)2]n (1), [Pd(μ-mPz)2]n (2), [Pd(μ-dmPz)2]n (3), [Pd(μ-IPz)2]n (4) {pyrazolate (Pz), 4-methylpyrazolate (mPz), 3,5-dimethylpyrazolate (dmPz), 4-iodopyrazolate (IPz)} have been described in this work. The exobidentate coordination mode of pyrazolato ligands in 14 was inferred on basis of IR spectroscopic evidences. TG investigations indicated that the introduction of substituents at the 4 position in the pyrazolyl moiety into coordination polymers do not affect significantly their thermal stability, whereas at the 3 and 5 position reduced the stability of the main chain. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.  相似文献   

16.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR’)](OSO2CF3)2 [RaaiR’=p-R-C6H4-NN-C3H2-NN-1-R’, (1—3), abbreviated as a N,N’-chelator, where N(imidazole) and N(azo) are represented by N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe=1,2-bis- (diphenylphosphinoethane)]. 31P NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine links with lot of phenyl protons in the aromatic region. 13C NMR spectrum, 1H-1H COSY and 1H-13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

17.
Summary Synthesis, elemental (CHN), spectral (FTIR), thermogravimetry (TG), differential thermal analysis (DTA) and complexometric titration have been applied to the investigation of the thermal behavior and structure of the complexes: Mg(ac)2(mpc)3·3H2O(I), Mg(Clac)2(mpc)2·3H2O(II), Mg(Cl2ac)2(mpc)2·3H2O(III), Mg(Cl3ac)2(mpc)2·3H2O(IV) and [Cu(ac)2(mpc)]2·3H2O(V) (ac=CH3COO-, Clac=ClCH2COO-, Cl2ac=Cl2CHCOO-, Cl3ac=Cl3CCOO- and mpc=methyl-3-pyridyl carbamate). Thermal decomposition of these complexes is a multi-stage processes. The composition of the complexes and the solid state intermediate and resultant products of thermolysis had been identified by means of elemental analysis and complexometric titration. The possible scheme of decomposition of the complexes is suggested. Heating the complexes first resulted in a release of water molecules. The TG results show that the loss of the volatile ligand (mpc) occurs in one step for complexes II, IV and V, and in two steps for complexes I and III. The final solid product of thermal decomposition was MgO or CuO. The thermal stability of the complexes can be ordered in the sequence: I=II<IV<III<V. Mpc was coordinated to Mg(II) or Cu(II) through the nitrogen atom of its heterocyclic ring. IR data suggest to a unidentate coordination of carboxylates to magnesium or copper n complexes I-V. The preliminary studies have shown that the complexes do have antimicrobial activities against bacteria, yeasts and/or fungi. The highest antimicrobial activities were manifested by the complex V.  相似文献   

18.
The reaction of 2, 6‐diacetylpyridine bis(thiosemicarbazone) (H2DAPTSC) with dimethylthallium hydroxide yielded the complexes [(TlMe2)2(DAPTSC)] and [TlMe2(HDAPTSC)]. The structure of [TlMe2(HDAPTSC)], determined by X‐ray diffractometry, exhibits a hitherto unknown coordination mode of the HDAPTSC anion in which its deprotonated thiosemicarbazone chain coordinates one metal atom through its sulphur and hydrazinic N atoms while a second metal atom is weakly coordinated through the S atom of the undeprotonated thiosemicarbazone chain. Each thallium atom is coordinated in both ways, with the result that the [TlMe2(HDAPTSC)] units are linked in infinite helical chains in the direction of the b axis. When reacting with diphenylthallium(III) hydroxide, H2DAPTSC induced a dephenylation process which led to the monophenylthallium(III) complex [TlPh(DAPTSC)]. Recrystallization from acetone yielded crystals of [TlPh(DAPTSC)]·C3H6O in which X‐ray diffractometry showed DAPTSC2— to be pentadentate, coordinating through its sulphur, azomethine N and pyridine N atoms. The 1H, 13C and 205Tl NMR data of [TlPh(DAPTSC)] indicate that its solid state molecular structure persists in DMSO solution, while those of [TlMe2(HDAPTSC)] indicate rapid alternation between coordination of the metal atom to one of the HDAPTSC thiosemicarbazone chains and its coordination to the other.  相似文献   

19.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

20.
Multinuclear solid‐state NMR and powder X‐ray diffraction data collected for phosphonate materials Zr(O3PC6H4PO3) · 3.6H2O and Sn(O3PC6H4PO3)0.85(O3POH)0.30 · 3.09H2O have resulted in the layered structure, where the phosphonic acids cross‐link the layers. The main structural motif (the 111 connectivity in the PO3 group) has been established by determination of chemical shift anisotropy parameters for phosphorus nuclei in the phosphonate groups. An analysis of the variable‐temperature 31P T1 measurements and the shapes of the phosphorus resonances in the 31P static NMR spectra have resulted in the dipolar mechanism of the phosphorus spin‐lattice relaxation, where the rotating phenylene rings reorient dipolar vectors PH as a driving force of the relaxation process. It has been found that water protons do not affect the 31P T1 times. The activation energy of the phenylene rotation in both compounds has been determined as low as 12.5 kJ/mol. The interpretation of the phosphorus relaxation data has been independently confirmed by the measurements of 1H T1 times for protons of the phenylene rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号