首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermolysis of [Ru3(CO)9(mu3-NOMe)(mu3-eta2-PhC2Ph)] (1) with two equivalents of [Cp*Co(CO)2] in THF afforded four new clusters, brown [Ru5(CO)8(mu-CO)3(eta5-C5Me5)(mu5-N)(mu4-eta2-PhC2Ph)] (2), green [Ru3Co2(CO)7(mu3-CO)(eta5-C5Me5)2(mu3-NH)[mu4-eta8-C6H4-C(H)C(Ph)]] (3), orange [Ru3(CO)7(mu-eta6-C5Me4CH2)[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (4) and pale yellow [Ru2(CO)6[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (5). Cluster 2 is a pentaruthenium mu5-nitrido complex, in which the five metal atoms are arranged in a novel "spiked" square-planar metal skeleton with a quadruply bridging alkyne ligand. The mu5-nitrido N atom exhibits an unusually low frequency chemical shift in its 15N NMR spectrum. Cluster 3 contains a triangular Ru2Co-imido moiety linked to a ruthenium-cobaltocene through the mu4-eta8-C6H4C(H)C(Ph) ligand. Clusters 4 and 5 are both metallapyrrolidone complexes, in which interaction of diphenylacetylene with CO and the NOMe nitrene moiety were observed. In 4, one methyl group of the Cp* ring is activated and interacts with a ruthenium atom. The "distorted" Ru3Co butterfly nitrido complex [Ru3Co(CO)5(eta5-C5Me5)(mu4-N)(mu3-eta2-PhC2Ph)(mu-I)2I] (6) was isolated from the reaction of 1 with [Cp*Co(CO)I2] heated under reflux in THF, in which a Ru-Ru wing edge is missing. Two bridging and one terminal iodides were found to be placed along the two Ru-Ru wing edges and at a hinge Ru atom, respectively. The redox properties of the selected compounds in this study were investigated by using cyclic voltammetry and controlled potential coulometry. 15N magnetic resonance spectroscopy studies were also performed on these clusters.  相似文献   

2.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   

3.
The reductive reactivity of lanthanide hydride ligands in the [(C5Me5)2LnH]x complexes (Ln = Sm, La, Y) was examined to see if these hydride ligands would react like the actinide hydrides in [(C5Me5)2AnH2]2 (An = U, Th) and [(C5Me5)2UH]2. Each lanthanide hydride complex reduces PhSSPh to make [(C5Me5)2Ln(mu-SPh)]2 in approximately 90% yield. [(C5Me5)2SmH]2 reduces phenazine and anthracene to make [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C12H8N2) and [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C10H14), respectively, but the analogous [(C5Me5)2LaH]x and [(C5Me5)2YH]2 reactions are more complicated. All three lanthanide hydrides reduce C8H8 to make (C5Me5)Ln(C8H8) and (C5Me5)3Ln, a reaction that constitutes another synthetic route to (C5Me5)3Ln complexes. In the reaction of [(C5Me5)2YH]2 with C8H8, two unusual byproducts are obtained. In benzene, a (C5Me5)Y[(eta(5)-C5Me4CH2-C5Me4CH2-eta(3))] complex forms in which two (C5Me5)(1-) rings are linked to make a new type of ansa-allyl-cyclopentadienyl dianion that binds as a pentahapto-trihapto chelate. In cyclohexane, a (C5Me5)2Y(mu-eta(8):eta(1)-C8H7)Y(C5Me5) complex forms in which a (C8H8)(2-) ring is metalated to form a bridging (C8H7)(3-) trianion.  相似文献   

4.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

5.
The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.  相似文献   

6.
The known aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) (1a) reacts with a catalytic amount of Br2Ni(PEt3)2 over 1% Na/Hg to afford the dinuclear Ni(I) biarylyl complex [(PEt3)2Ni]2(mu-eta1:eta1-3,4-F2C6H2-3',4'-F2C6H2) (2a), which results from a combination of C-C bond formation and C-H bond rearrangement. The dinuclear benzyne [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) (3) was obtained by the reaction of 1a with a stoichiometric amount of Br2Ni(PEt3)2 over excess 1% Na/Hg, and 3 was found to catalyze the conversion of 1a to 2a. The reaction of 1a with B(C6F5)3 produced the trinuclear complex (PEt3)3Ni3(mu3:eta1:eta1:eta2-4,5-F2C6H2)(mu3:eta1:eta1:eta2-4,5-F2C6H2-4',5'-F2C6H2) (6). The addition of PEt3 to 6 produced 1 equiv of 1a and 1 equiv of [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7a). Both 6 and 7a were identified as intermediates in the conversion of 1a to 2a. The analogue [(PEt3)(PMe3)Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7b) was prepared by the addition of PMe3 to 6 and was structurally characterized. NMR spectroscopic evidence identified the additional asymmetric biarylyl [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-3',4'-F2C6H2) (8a) during the conversion of 1a to 2a. The initial observation of 2 equiv of 8a for every equivalent of 2a produced from solutions of 7a suggests that 8a and 2a are formed from a common intermediate. A crossover labeling experiment shows that the C-H bond rearrangement steps in the conversion of 1a to 2a occur with the intermolecular scrambling of hydrogen and deuterium labels. The evidence collected suggests that Ni(I) complexes are capable of activating aromatic C-H bonds.  相似文献   

7.
Reaction of 1,1-difluoroallene and tetrafluoroallene with a series of transition metal complex fragments yields the mononuclear allene complexes [CpMn(CO)(2)(allene)] (1), [(CO)(4)Fe(allene)] (2), [(Ph(3)P)(2)Pt(C(3)H(2)F(2))] (4), [Ir(PPh(3))(2)(C(3)H(2)F(2))(2)Cl] (5), and the dinuclear complexes [mu-eta(1)-eta(3)-C(3)H(2)F(2))Fe(2)(CO)(7)] (3), [Ir(PPh(3))(C(3)H(2)F(2))(2)Cl](2) (6), and [mu-eta(2)-eta(2)-C(3)H(2)F(2))(CpMo(CO)(2))(2)] (9), respectively. In attempts to synthesize cationic complexes of fluorinated allenes [CpFe(CO)(2)(C(CF(3))=CH(2))] (7a), [CpFe(CO)(2)(C(CF(3))=CF(2))] (7b) and [mu-I-(CpFe(CO)(2))(2)][B(C(6)H(3)-3,5-(CF(3))(2))(4)] were isolated. The spectroscopic and structural data of these complexes revealed that the 1,1-difluoroallene ligand is coordinated exclusively with the double bond containing the hydrogen-substituted carbon atom. 1,1-Difluoroallene and tetrafluoroallene proved to be powerful pi acceptor ligands.  相似文献   

8.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

9.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

10.
The reaction of the aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) with a catalytic amount of Ni(PEt3)2 results in a dinuclear Ni(I) complex from the coupling of the isomer (PEt3)2Ni(eta2-C6H2-3,4-F2), obtained via rearrangement of the aromatic C-H bonds, which demonstrates that Ni(PEt3)2 is kinetically capable of C-H bond activation, even in the presence of C-F bonds. The intermediate [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) was isolated and crystallographically characterized; the mu-eta2:eta2-bonding mode observed is unprecedented in aryne chemistry.  相似文献   

11.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

12.
The interactions of the benzothiazolate complex, CpCr(CO)(2)(SCSN(C(6)H(4))) (2), and the tetrazole thiolate complex, CpCr(CO)(3)(eta(1)-SCN(4)Ph) (3), with controlled amounts of Me(3)OBF(4) and (MeO)(2)SO(2), respectively, produced the corresponding mu(3)-oxo trinuclear thionate-bridged complexes, [Cp(3)Cr(3)(mu(2)-OH)(mu(3)-O)(mu(2)-eta(2)-SCSN(C(6)H(4)))(2)](5)BF(4) (45%) and [Cp(3)Cr(3)(mu(2)-OH)(mu(3)-O)(mu(2)-eta(2)-SCN(4)Ph)(2)](9)(MeOSO(3)) (53%), together with their respective free dimethylated thiolate ligands, [MeSCSNMe(C(6)H(4))](4)BF(4) and (Me(2)SCN(4)Ph)(8)MeOSO(3). The reaction of 3 with Me(3)OBF(4) resulted in the isolation of a binuclear complex, [Cp(2)Cr(2)(mu-OH)(mu-eta(2)-SCN(4)Ph)(2)](7)BF(4) (43%), and (8)BF(4) (27%). The reaction of the thiopyridine complex, CpCr(CO)(2)(SPy) (4), with I(2) also produced a similar mu(3)-oxo complex 10 (31%), together with CpCrI(2)(THF) (11) and the disulfide (SPy)(2). Similar reactions with 2 and 3 and I(2) yielded species 5 and 7, together with 11 and disulfides derived from their respective ligands. Cyclic voltammograms recorded in solutions of 5 and 9 indicated that the compounds could be reduced and oxidized at very similar potentials. An EPR spectrum characteristic of a compound with axial symmetry was obtained for 9 at 7 K. Single-crystal X-ray diffraction analyses confirmed that species 7 is dinuclear, whereas 5 and 9 are structural trinuclear analogues, each containing a mu(3)-oxo central core.  相似文献   

13.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

14.
A comparative synthetic, structural, and thermochemical study on a series of chelate complexes containing the fragment (eta 5-C5Me5)Ir [(eta 5-C5Me5)Ir(TsNCH2CH2NTs) (1), (eta 5-C5Me5)Ir(TsNCH2CO2) (2), (eta 5-C5Me5)Ir(CO2CO2) (3)] was performed to clarify the roles of carboxylato and sulfonamido ligands. Whereas 1 and 2 are monomeric in solution and in the solid state, 3 appears to exist as an oligomer or polymer, (3)n, which can be broken up by addition of a ligand L such as a phosphine, CO, or 2-methoxypyridine to form (eta 5-C5Me5)Ir(L)(CO2CO2) (6). The synthesis of (3)n from [(eta 5-C5Me5)IrCl(mu-Cl)]2 required the use of silver oxalate in CH3CN, but if other solvents were used, the bridging oxalato complex (eta 5-C5Me5)IrCl(mu-eta 2-eta 2-C2O4)ClIr(eta 5-C5Me5) (7) was obtained and identified by X-ray diffraction. Enthalpies for reaction of THF-soluble monomers 1 and 2 with PMe3 were determined to be -28.7(0.5) and -28.5(0.4) kcal mol-1, respectively. The oligomerization behavior of 3 may be a result of reduced sigma- or pi-donation of carboxylato ligands compared to N-tosylamido ligands, because the values for nu CO in oxalato and bissulfonamido complexes 6-CO and (eta 5-C5Me5)Ir(CO)(TsNCH2CH2NTs) (4-CO) were 2064 and 2042 cm-1, respectively.  相似文献   

15.
Treatment of the single cube nitrido complexes [(thf)x((Me3Si)2N)M((mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N))](M = Mg, x= 0; Ca, x= 1) with one equivalent of anilines NH2Ar in toluene affords the arylamido complexes [(ArHN)M((mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N))]n[M = Mg (3), n= 1, Ar = 4-MeC6H4; Ca (4), n= 2, Ar = 2,4,6-Me3C6H2]. The magnesium complex 3 has a single-cube structure whereas the X-ray crystal structure of the analogous calcium derivative 4 shows two cube-type azaheterometallocubane moieties Ca((mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)) held together by two mu-2,4,6-trimethylanilido ligands. Complexes 3 and 4 react with chloroform-d1 at room temperature to give the metal halide adducts [Cl2M((mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N))](M = Mg, Ca). A solution of 3 in n-hexane gave complex [(Mg2(mu3-N)(mu3-NH)5[Ti3(eta5-C5Me5)3(mu3-N)]2)(mu-NHAr)3] which shows three mu-4-methylanilido ligands bridging two [MgTi3N4] cube type cores according to an X-ray crystal structure determination.  相似文献   

16.
The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)]]Me. For comparison purposes, derivatives of the related phospholane ligand PhP[Me(2)C(4)H(6)] have also been investigated, including Ph[Me(2)C(4)H(6)]PS, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Cl, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Me, Ir[PPh[Me(2)C(4)H(6)]](COD)(Cl), and Pd[P[Me(2)C(4)H(6)]Ph][eta(2)-C(6)H(4)C(H)(Me)NMe(2)]Cl. The steric and electronic properties of PhP[(C(5)Me(4))(2)] are determined to be intermediate between those of PPh(2)Me and PPh(3). Thus, the crystallographic cone angles increase in the sequence PPh(2)Me (134.5 degrees) < PhP[(C(5)Me(4))(2)] (140.2 degrees) < PPh(3) (148.2 degrees), while the electron donating abilities decrease in the sequence PPh(2)Me > PhP[(C(5)Me(4))(2)] > PPh(3). Finally, PhP[(C(5)Me(4))(2)] has a smaller cone angle and is less electron donating than the structurally similar phosphine, PhP[Me(2)C(4)H(6)].  相似文献   

17.
The sterically crowded (C(5)Me(5))(3)U complex reacts with KC(8) or K/(18-crown-6) in benzene to form [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)), 1, and KC(5)Me(5). These reactions suggested that (C(5)Me(5))(3)U could be susceptible to (C(5)Me(5))(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C(5)Me(5))(3)U was treated with KN(SiMe(3))(2) to form (C(5)Me(5))(2)U[N(SiMe(3))(2)] and KC(5)Me(5). 1 has long U-C(C(5)Me(5)) bond distances comparable to (C(5)Me(5))(3)U, and it too is susceptible to (C(5)Me(5))(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe(3))(2) to make its amide-substituted analogue [[(Me(3)Si)(2)N](C(5)Me(5))U](2)(mu-eta(6):eta(6)-C(6)H(6)), 2. Complexes 1 and 2 have nonplanar C(6)H(6)-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form [(C(5)Me(5))(C(8)H(8))U](2)(mu-eta(3):eta(3)-C(8)H(8)), (C(5)Me(5))(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C(5)Me(5))(1-) ligands, and two electrons from a bridging (C(6)H(6))(2-) moiety.  相似文献   

18.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

19.
1-Hydroxybenzotriazole and 1-hydroxypyridine-2-thione were incorporated as ligands with the cluster Ru3(CO)10 (NCMe)2 to give [(mu-H)Ru3(CO)10(mu2-2,3-eta2-NNN(O)C6 H4)] and [(mu-H)Ru3(CO)9(mu2-eta1 : eta2-C5H4N(O)S)], respectively. Irradiation of these two new triruthenium metal clusters individually with 350 nm UV light in a phosphate buffer (pH 6.0) containing form I DNA resulted in single-strand cleavage. Cluster [(mu-H)Ru3(CO)10(mu2-2,3--eta2-NNN (O)C6H4)] was also found to bind to calf thymus DNA upon UV irradiation.  相似文献   

20.
The reactions of [Cp*Fe(mu-SR1)3FeCp*] (Cp* = eta5-C5Me5; R1 = Et, Me) with 1.5 equiv R2NHNH2 (R2 = Ph, Me) give the mu-eta2-diazene diiron thiolate-bridged complexes [Cp*Fe(mu-SR1)2(mu-eta2-R2N NH)FeCp*], along with the formation of PhNH2 and NH3. These mu-eta2-diazene diiron thiolate-bridged complexes exhibit excellent catalytic N-N bond cleavage of hydrazines under ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号