首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王海娜  张慧  俞天智  赵玉玲 《化学通报》2020,83(3):240-245,252
设计合成了2种以香豆素为荧光团、酰腙为识别基团的双香豆素双酰腙类荧光探针,并对其进行了结构表征及光谱性能研究。结果表明,探针对Cu^2+具有高选择性和高灵敏度,表现出明显的荧光猝灭效应,探针与Cu^2+以1∶2的结合比相互作用,对Cu^2+检测限为10^-9mol/L。  相似文献   

2.
基于密度泛函理论水平上的解析响应函数方法,采用极化连续模型(PCM)研究了两种新型的截断型双光子荧光H2S探针AcHS-1, 2的单双光子吸收及荧光发射性质,并对其响应机制进行了理论分析.计算结果表明, AcHS-1, 2在与H2S反应后,生成物的单双光子吸收性质特别是荧光发射性质发生了明显的变化,它们的吸收峰都有较大的红移.此外,不同末端基团对探针分子的光学性质也有一定的影响.分析了探针分子AcHS-1, 2与H2S反应前后的Mulliken布居及电荷转移过程,反应后分子内电荷转移量增大,从而改变了分子的光学性质,实现了对H2S的探测.  相似文献   

3.
In this paper, two colorimetric and turn-on fluorescent probes N-[2-(2-hydroxy)-ethoxy] ethyl-4-azido-1,8-naphthalimide (SS1) and N-butyl-4-azido-1,8-naphthalimide (SS2) for selective recognition of H2S were designed and synthesized. The probes were constructed by incorporating an azido group into the naphthalimide fluorophore as a specifical reaction group for sulfide utilizing its reducing property. Once treated with H2S, the azido groups of the probes were converted to amino groups and the solutions’ color changed from colorless to yellow companied with a strong yellow-green fluorescence. Rapid and sensitive responses of the probes towards H2S were achieved in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB): the reaction was completed within 10 min in CTAB compared to more than 4 h in buffer solution, and the detection limit decreased from 0.5 μM to 20 nM. High selectivity and good competition of both probes towards H2S over other 11 ions and 2 reducing agents were realized in CTAB micelle. An overall linear concentration range of 0.05 μM to 1 mM was achieved with the assistance of differently charged surfactants CTAB and sodium dodecyl sulfate (SDS). The probes were applied to rapidly and sensitively detect H2S levels in fetal bovine serum without any pretreatment of the sample.  相似文献   

4.
易卫国  曹忠  鄢东  曹婷婷  薛琳 《分析化学》2012,40(8):1241-1246
设计合成了两种新型的以2-苯基苯并噻唑为荧光团、N-(2-吡啶甲基)胺为识别基团的铁离子荧光分子探针2-(4-N-2-吡啶甲胺基)苯基-1,3-苯并噻唑(A1)和2-(4-N,N双2-吡啶甲胺基)苯基-1,3-苯并噻唑(A2),化合物结构用UV,IR,1HNMR和13CNMR进行了表征,并考察了探针的荧光特性.结果表明荧光分子探针A2在CH3 CH2OH/H-12O(1∶1,V/V)溶液中,能从常见的金属离子中以95%的荧光淬灭率选择性地识别铁离子,对Fe3+线性响应范围在0.15~1.3 μ mol/L之间,且检出限达10 nmol/L.  相似文献   

5.
Theranostic probes provide both therapeutic and diagnostic imaging capabilities in one molecule and show significant promise for use in magnetic resonance imaging (MRI) examinations. The present study describes for the first time the synthesis and utility of nitroxide‐based contrast agents exhibiting a nonsteroidal anti‐inflammatory drug effect. The target theranostic probes were prepared by connecting the carboxyl group of ibuprofen or ketoprofen to the hydroxyl group of 3‐hydroxymethyl‐2,2,5,5‐tetramethylprrolidine‐1‐oxyl by a condensation reaction in the presence of dicyclohexylcarbodiimide and 4‐dimethylaminopyridine in dichloromethane. MRI of mouse heads after administration of either synthesized theranostic probe indicated that the probes enter the brain by passing through the blood–brain barrier (BBB), resulting in T1 contrast enhancement in mouse brain. This enhancement persisted for the duration of the half‐life of about 40 min, which is longer than that obtained by most of pyrrolidine nitroxide molecules. The therapeutic capacities of these theranostic probes were examined using a lipopolysaccharide (LPS)‐induced brain inflammation model. The production of nitric oxide, an inflammation marker in septic mouse brain induced by LPS, was remarkably inhibited by the addition of either synthesized probe, indicating that they also act as anti‐inflammatory drugs. The present results indicate that nitroxide‐based theranostic probes act as both BBB‐permeable redox‐sensitive contrast agents and as an anti‐inflammatory drug in septic mouse brain. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
报道了空间稳定的表面增强拉曼散射(SERS)标记的金纳米棒探针在免疫检测方面的应用.该探针是将拉曼活性分子4-巯基苯甲酸和生物亲和性高分子α-巯基-ω-羧基聚乙二醇共吸附于金纳米棒表面而制得.其中,聚乙二醇高分子链为探针提供保护作用和空间稳定,使之可以耐受较苛性的条件;其端位的羧基与抗体等靶向实体结合,从而赋予探针检测识别功能.当探针检测待测抗原时(通过固体基底上的捕获抗体、待测抗原和探针上的抗体之间的特异性结合,形成经典“三明治”夹心结构),探针上4-巯基苯甲酸的SERS信号就能示踪出这种识别.该探针对单组分抗原的检出浓度能低至1×10-9mg·mL-1.  相似文献   

7.
Useful segments (1, 2) for chemical probes embedded in a Galβ1→4Fuc unit were designed and prepared for characterizing sugar-binding proteins in Caenorhabditis elegans. Segment 1 with an amino group terminus was used as a recognition unit in affinity chromatography. It was revealed that some proteins (annexins and galectins) in C. elegans have an affinity for Galβ1→4Fuc.  相似文献   

8.
Current probes for alkaline phosphatase (ALP) detection had been developed mainly by adding a phosphate group to a dye, which would lead to indistinct performance when implemented in a living system as several phosphatases exist together. In this study, the nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) were introduced into 2′‐(2′‐hydroxyphenyl)‐benzothiazole‐based probes, and highly fluorescent turn‐on probes with good selectivity towards ALP over several phosphatases, as well as high affinity and low toxicity were obtained. In the presence of l ‐phenylalanine, an ALP inhibitor, a strong decrease in fluorescence recovery was observed. These probes allowed for real‐time imaging of endogenous ALP activity in living cells as well as in a zebrafish model.  相似文献   

9.
The synthesis of 2'-azido-5-cyano-2'-deoxyuridine, N(3)CNdU (1), from trityl-protected 2'-amino-2'-deoxyuridine was accomplished in four steps with a 12.5% overall yield. The IR absorption positions and profiles of the azide and nitrile group of N(3)CNdU were investigated in 14 different solvents and water/DMSO solvent mixtures. The azide probe was superior to the nitrile probe in terms of its extinction coefficient, which is 2-4 times larger. However, the nitrile IR absorbance profile is generally less complicated by accidental Fermi resonance. The IR frequencies of both probes undergo a substantial red shift upon going from water to aprotic solvents such as THF or DMSO. DFT calculations supported the hypothesis that the molecular origin of the higher observed frequency in water is primarily due to hydrogen bonds between the probes and water molecules.  相似文献   

10.
Herein, a new molecular autocatalytic reaction scheme based on a H2O2-mediated deprotection of a boronate ester probe into a redox cycling compound is described, generating an exponential signal gain in the presence of O2 and a reducing agent or enzyme. For such a purpose, new chemosensing probes built around a naphthoquinone/naphthohydroquinone redox-active core, masked by a self-immolative boronic ester protecting group, were designed. With these probes, typical autocatalytic kinetic traces with characteristic lags and exponential phases were obtained by using either UV/Visible or fluorescence optical detection, or by using electrochemical monitoring. Detection of concentrations as low as 0.5 μm H2O2 and 0.5 nm of a naphthoquinone derivative were achieved in a relatively short time (<1 h). From kinetic analysis of the two cross-activated catalytic loops associated with the autocatalysis, the key parameters governing the autocatalytic reaction network were determined, indirectly showing that the analytical performances are currently limited by the slow nonspecific self-deprotection of boronate probes. Collectively, the present results demonstrate the potential of this new exponential molecular amplification strategy, which, owing to its generic nature and modularity, is quite promising for coupling to a wide range of bioassays involving H2O2 or redox cycling compounds, or for use as a new building block in the development of more complex chemical reaction networks.  相似文献   

11.
Two highly selective OFF-ON green emitting fluorescent thiol probes (1 and 2) with intense absorption in the visible spectrum (molar extinction coefficient ε is up to 73?800 M(-1) cm(-1) at 509 nm) based on dyads of BODIPY (as electron donor of the photo-induced electron transfer, i.e.PET) and 2,4-dinitrobenzenesulfonyl (DNBS) (as electron acceptor of the PET process) were devised. The single crystal structures of the two probes were determined. The distance between the electron donor (BODIPY fluorophore) and the electron acceptor (DNBS) of probe 2 is larger than that of probe 1, as a result the contrast ratio (or the PET efficiency) of probe 2 is smaller than that of probe 1. However, fluorescence OFF-ON switching effects were observed for both probe 1 and probe 2 in the presence of cysteine (the emission enhancement is 300-fold for probe 1 and 54-fold for probe 2). The fluorescence OFF-ON sensing mechanism is rationalized by DFT/TDDFT calculations. We demonstrated with DFT calculations that DNBS is ca. 0.76 eV more potent to accept electrons than the maleimide moiety. The probes were used for fluorescent imaging of cellular thiols.  相似文献   

12.
The specific detection of cysteine (Cys) over homocysteine (Hcy), glutathione (GSH) and other amino acids is of great significance for studying its biological functions as well as for the diagnosis of related diseases. Chloroacetyl group was often used as a reaction site for cysteine fluorescent probes for its sensitivity and selectivity. However, high background fluorescence and low stability are common problems encountered by such probes. Here, four chloroacetyl group based fluorescent probes (C1, C2, C3, and H4) was synthesized for a comparative study. We found that the inefficient quenching ability of chloroacetyl group turned into an advantage when connected with a ratiometric fluorophore. With the modification of chloroacetyl group, probe H4 displayed excellent ratiometric property and great selectivity for Cys, the stability was also improved. Additionally, the probe was successfully applied for quantitative detection of Cys in fetal bovine serum and real-time imaging in living HeLa cells with low toxicity.  相似文献   

13.
Three green phosphorescent Iridium(III) complex-based probes with different ligands (Cl ( Ir-1 ), NCS ( Ir-2 ) and NCO ( Ir-3 )) had been developed to detect hypochlorite (ClO) using pivaloyl group as recognition site. The introduction of strong field ligand NCS and NCO caused an increase of quantum yields and phosphorescent lifetime both in solid and solution states. All the three probes could selectively and rapidly detect ClO through the changes in UV-visible and phosphorescence spectra. Upon addition of ClO to the solution of probes, green phosphorescent color of probes displayed obvious quench. Meanwhile, using a portable UV lamp, test strips which were pre-immersed with the above-mentioned probes could achieve easy detection of ClO. The sensing process was confirmed by NMR, IR and ESI-MS.  相似文献   

14.
《Tetrahedron》2019,75(36):130477
Two fluorescein derivatives containing 2,4-dinitrobenzenesulfonyl group have been developed as fluorescent probes to detect the biothiols (Cys, Hcy and GSH) in aqueous solution. Probes 1 and 2 can distinguish these biothiols in the presence of other amino acids. While probe 1 can recognize the biothiols in PBS/DMSO (v:v = 95:5, pH = 7.40) solution, notably probe 2 could be used in PBS buffer solution (pH = 7.40). The detection limit of Cys for probe 2 reached at 0.021 μM in aqueous solution, which was lower than the intracellular concentration of Cys. In the recognition process, a reaction between the probes and the biothiols occurred, in which the S–O bond was cleaved to remove 2, 4-dinitrobenzenesulfonyl group. The data of 1H NMR, MS and DFT/TD-DFT calculation further confirmed the detection mechanism. Moreover, two probes were successfully applied to the HeLa cell imaging.  相似文献   

15.
将链置换的高度特异性与纳米金凝聚变色的光学特性相结合,设计了一种新型的单碱基突变比色检测方法。本方法直接采用纳米金作为比色报告基团,以两个末端均带有巯基的双链DNA为特异捕获探针,利用互补序列和单碱基突变序列对双链探针置换能力的差异,实现了对单碱基突变的检测。本检测方法直观、快速、简便、成本低,pmol级的样品无需仪器就可以观察到颜色的变化。  相似文献   

16.
2-(4-Amino-substituted-3-nitrophenyl)-3-hydroxyquinolin-4(1H)-ones have been studied to evaluate their fluorescence properties and possible use as molecular fluorescent probes. The amino group was substituted with various alkyl moieties possessing a suitable terminal functional group (such as hydroxy or amino group) that could serve to bind a 3-hydroxyquinolin-4(1H)-one (3HQ) fluorescence label to a biomolecule. Besides simple hydrocarbon chains, ligands containing ethylenoxy units as optimal spacers were also tested. The structure-fluorescence properties and theoretical applicability of the studied molecules are discussed.  相似文献   

17.
Force probes allow real‐time monitoring of forces acting in different regions of large molecules and are potentially suited for the investigation of structural changes occurring in macromolecules during, e. g., folding processes. 1 – 10 Such information is crucial for the understanding of mechanochemical reactivity. 2 , 3 , 6 , 7 To this end, small molecular force probes can be incorporated into large molecules. 2 , 3 , 11 – 13 Some of the available systems are based on mechanochromism, the change of the UV/Vis absorption spectrum of a molecule under mechanical stress. 1 , 14 Herein we propose the idea of using molecular force probes in which the point‐group symmetry is reduced as a result of mechanical deformation. This effect leads to significant and characteristic changes in the UV/Vis, IR, and Raman spectra of the deformed molecules, which were determined using computational methods. Beneficially, these changes are reversible and occur even if the applied forces are small.  相似文献   

18.
The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.  相似文献   

19.
A truncated approach to the design of molecular probes from small molecule libraries is outlined, based upon the incorporation of a bioorthogonal marker. The applicability of this strategy to small molecule chemical genetics screens has been demonstrated using analogues of the known stress activated protein kinase (SAPK) pathway activator, anisomycin. Compounds marked with a propargyl group have shown activation of the SAPK pathways comparable to that induced by their parent structures, as demonstrated by immunoblot assays against the downstream target JNK1/2. The considerable advantages of this new approach to molecular probe design have been illustrated through the rapid development of a functionally active fluorescent molecular probe, through coupling of the marked analogues to fluorescent azides using the copper(i)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Active molecular probes generated in this study were used to investigate cellular uptake through FACS analysis and confocal microscopy.  相似文献   

20.
The mobility of spin probes having a secondary, tertiary, or quaternary amino group in dried nylon films was investigated by means of electron spin resonance (ESR) measurements and compared with the behavior of previously investigated spin probes having a primary amino group, a carboxylate group, or a sulfate group. The spin probes having a primary or secondary amino group showed effects of drawing on the mobility, while the other probe molecules did not. This result could be interpreted by considering the interactions between the spin probes and the nylon chains. In the undrawn nylon film, the mobilities of the nonionic spin probes were almost the same, and smaller than those of the charged spin probes, suggesting that the location in the nylon film is different for the uncharged and charged spin probes. These results are discussed in detail using separation of extrema of the ESR spectra, rotational correlation times, and anisotropy parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号