首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A three-dimensional nonstationary problem of vibrations of a flexible shell moving on the surface of an ideal heavy fluid. The forces due to surface tension are ignored. The problem is formulated in the space of the acceleration potential. The potential of the pulsating source is found by solving the Euler equation and the continuity equation taking into account the free-surface conditions (linear theory of small waves) and the conditions at infinity. The density distribution function of the dipole layer is determined from the boundary conditions on the surface of the shell. Formulas for determining the shape of gravity waves on the fluid surface and the natural frequencies of vibrations of the shell are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 66–75, July–August, 2009.  相似文献   

2.
The paper presents the solution of the problem of determining the stress state in an elastic matrix containing a rigid inclusion of the shape of a thin cylindrical shell. It is assumed that harmonic vibrations occur in the matrix under the conditions of axial symmetry (the symmetry axis is the inclusion axis) and the conditions of full adhesion between the inclusion and the matrix are satisfied. The vibrations are caused by the propagation of a plane wave whose front is perpendicular to the inclusion axis. The solution method is based on representing the displacements in the matrix as discontinuous solutions of the equations of axisymmetric oscillations of an elastic medium with unknown stress jumps on the inclusion surface. The realization of the boundary conditions for these jumps leads to a system of integral equations. Its solution is constructed numerically by the mechanical quadrature method with the use of special quadrature formulas for specific integrals. It is numerically investigated how the ratio of the inclusion geometric dimensions and the propagating wave frequency affect the stress concentration near the inclusion.  相似文献   

3.
This paper considers the problem of a semi-infinite, isotropic, linear viscoelastic half-plane containing multiple, non-overlapping circular holes. The sizes and the locations of the holes are arbitrary. Constant or time dependent far-field stress acts parallel to the boundary of the half-plane and the boundaries of the holes are subjected to uniform pressure. Three types of loading conditions are assumed at the boundary of the half-plane: a point force, a force uniformly distributed over a segment, a force uniformly distributed over the whole boundary of the half-plane. The solution of the problem is based on the use of the correspondence principle. The direct boundary integral method is applied to obtain the governing equation in the Laplace domain. The unknown transformed displacements on the boundaries of the holes are approximated by a truncated complex Fourier series. A system of linear equations is obtained by using a Taylor series expansion. The viscoelastic stresses and displacements at any point of the half-plane are found by using the viscoelastic analogs of Kolosov–Muskhelishvili’s potentials. The solution in the time domain is obtained by the application of the inverse Laplace transform. All the operations of space integration, the Laplace transform and its inversion are performed analytically. The method described in the paper allows one to adopt a variety of viscoelastic models. For the sake of illustration only one model in which the material responds as the standard solid in shear and elastically in bulk is considered. The accuracy and efficiency of the method are demonstrated by the comparison of selected results with the solutions obtained by using finite element software ANSYS.  相似文献   

4.
The stress field due to a half-plane inhomogeneity with plane eigenstrain is obtained by a limiting procedure from the one of a circular Eshelby inhomogeneity/inclusion. This field, which requires tractions to be applied at infinity to be sustained, has minimum strain energy versus any other superposed homogeneous one, and is the Eshelby solution inside plus the Hill jump conditions. By superposition, the stresses due to an infinite strip (Eshelby property domain) inhomogeneity with eigenstrain are obtained, and, by superposition periodic strips or laminates can be obtained. By cancelling the stresses on a free-surface, strips of inclusions meeting a free surface are solved. They exhibit tensile stresses under the free surface, and logarithmic singularities in the tensile stress at the vertex, which may initiate cracking. The Eshelby self-forces on the boundary of circular and half-plane inhomogeneities are computed.  相似文献   

5.
We solve the problem on the interaction of plane harmonic waves with a thin elastic plate-shaped inclusion. The ambient medium is assumed to be in plane strain. The smooth contact conditions are satisfied on both sides of the inclusion. The bending displacements of the inclusion are determined from the corresponding differential equation. In the statement of boundary conditions for this equation, one should take into account the transverse forces and bending moments applied to the lateral edges of the inclusion, while the boundary conditions are posed on the midplane of the inclusion. Using the discontinuous solution method, we reduce the problem to a system of two singular integral equations, which are solved numerically by the mechanical quadrature method. We obtain approximate formulas for the stress intensity coefficients near the ends of the inclusion and for the transverse forces and moments applied to the inclusion.  相似文献   

6.
The paper presents a solution of the problem of determining the stress state in an elastic isotropic half-space with a crack intersecting its boundary under harmonic longitudinal shear vibrations. The vibrations are excited by a regular action of a harmonic shear load on the crack shores. The solution method is based on the use of the discontinuous solution of the Helmholtz equation, which allows one to reduce the original problem to a singular integro-differential equation for the unknown jump of the displacement on the crack surface. The solution of this equation is complicated by the existence of a fixed singularity of its kernel. Therefore, one of the main results is the development of an efficient approximate method for solving such equations, which takes into account the true asymptotics of the unknown function. The latter allows one to obtain a high-precision approximate formula for calculating the stress intensity factor.  相似文献   

7.
Dynamic rigid indentation of a linearly elastic half-plane in the presence of Coulomb friction is studied in this paper. A rigid punch, which is either wedge- or parabolic-shaped, is rapidly driven into the deformable body so that stress waves are generated. The contact region is assumed to extend at a constant sub-Rayleigh speed (this situation can be achieved by conveniently specifying the kinetic and geometric characteristics of indentor), whereas, due to symmetry, friction acts in opposing directions on opposite sides of the indentor. As the present exact analysis shows, this sign reversal of the tangential traction along the half-plane surface creates an extra stress-singularity at the changeover point of the boundary conditions (due to symmetry, this point here coincides with the point where the indentor apex makes contact with the half-plane surface). The study exploits the problem's self-similarity by utilizing homogeneous-function techniques previously used by L.M. Brock, along with the Riemann-Hilbert problem analysis. Representative numerical results are given for the wedge indentation case.  相似文献   

8.
The transient dynamic coupled-thermoelasticity problem of a half-space under the action of a buried thermal/mechanical source is analyzed here. This situation aims primarily at modeling underground explosions and impulsively applied heat loadings near a boundary. Also, the present basic analysis may yield the necessary field quantities required to apply the Boundary Element Method in more complicated thermoelastodynamic problems involving half-plane domains. A material response for the half-space predicted by Biots thermoelasticity theory is assumed in an effort to give a formulation of the problem as general as possible (within the confines of a linear theory) . The loading consists of a concentrated thermal source and a concentrated force (mechanical source) having arbitrary direction with respect to the half-plane surface. Both thermal and mechanical line sources are situated at the same location in a fixed distance from the surface. Plane-strain conditions are assumed to prevail. Our problem can be viewed as a generalization of the classical Nakano–Lapwood–Garvin problem and its recent versions due to Payton (1968) and Tsai and Ma (1991) . The initial/boundary value problem is attacked with one- and two-sided Laplace transforms to suppress, respectively, the time variable and the horizontal space variable. A 9×9 system of linear equations arises in the double transformed domain and its exact solution is obtained by employing a program of symbolic manipulations. From this solution the two-sided Laplace transform inversion is then obtained exactly through contour integration. The one-sided Laplace transform inversion for the vertical displacement at the surface is obtained here asymptotically for long times and numerically for short times.  相似文献   

9.
The problem of a planar transversely isotropic magnetoelectroelastic layered half-plane subjected to generalized line forces and edge dislocations is analyzed. The complete solutions consist only of the simplest solutions for an infinite magnetoelectroelastic medium with applied loadings. The physical meaning of this solution is the image method. It is shown that the explicit solutions include Green's function for originally applied singularities in an infinite medium and the other image singularities are induced to satisfy free surface and interface continuity conditions. The mathematical method used in this study provides an automatic determination for the locations and magnitudes of all image singularities. The locations and magnitudes of image singularities are dependent on the roots of the characteristic equation which is related to the material constants of the layered half-plane. With the aid of the generalized Peach-Koehler formula, the explicit expressions of image forces acting on dislocations are easily derived from the full-field solutions of the generalized stresses. Numerical results for the full-field distributions of stresses, electric fields, and magnetic fields in the layered half-plane medium are presented based on the analytical solutions. The image forces and equilibrium positions of one dislocation, two dislocations, and an array of dislocations are presented by numerical calculations and are discussed in detail.  相似文献   

10.
Analytical and computational methods are developed for contact mechanics analysis of functionally graded materials (FGMs) that possess elastic gradation in the lateral direction. In the analytical formulation, the problem of a laterally graded half-plane in sliding frictional contact with a rigid punch of an arbitrary profile is considered. The governing partial differential equations and the boundary conditions of the problem are satisfied through the use of Fourier transformation. The problem is then reduced to a singular integral equation of the second kind which is solved numerically by using an expansion–collocation technique. Computational studies of the sliding contact problems of laterally graded materials are conducted by means of the finite element method. In the finite element analyses, the laterally graded half-plane is discretized by quadratic finite elements for which the material parameters are specified at the centroids. Flat and triangular punch profiles are considered in the parametric analyses. The comparisons of the results generated by the analytical technique to those computed by the finite element method demonstrate the high level of accuracy attained by both methods. The presented numerical results illustrate the influences of the lateral nonhomogeneity and the coefficient of friction on the contact stresses.  相似文献   

11.
The contact problem of the interaction of a rigid punch with a viscoelastic half-plane is considered. The dependence of the displacement of the boundary of half-plane on the normal load applied to it is determined, and the integral equation for determining the contact pressure is derived and solved by the method of “small λ”. Distributions of contact pressures under the punch are graphically represented.  相似文献   

12.
A Kirchhoff-Love type applied theory is used to study the specific characteristics of harmonic waves and vibrations of a helically anisotropic shell. Special attention is paid to axisymmetric and bending vibrations. In both cases, the dispersion equations are constructed and a qualitative and numerical analysis of their roots and the corresponding elementary solutions is performed. It is shown that the skew anisotropy in the axisymmetric case generates a relation between the longitudinal and torsional vibrations which is mathematically described by the amplitude coefficients of homogeneous waves. In the case of a shell with rigidly fixed end surfaces, the dependence of the first two natural frequencies on the shell length and the helical line slope α, i.e., the geometric parameter of helical anisotropy, is studied. A boundary value problem in which longitudinal vibrations are generated on one of the end surfaces and the other end is free of forces and moments is considered to analyze the degree of transformation of longitudinal vibrations into longitudinally torsional vibrations. In the case of bending vibrations, two problems for a half-infinite shell are studied as well. In the first problem, the waves are excited kinematically by generating harmonic vibrations of the shell end surface in the plane of the axial cross-section, and it is shown that the axis generally moves in some closed trajectories far from the end surface. In the second problem, the reflection of a homogeneous wave incident on the shell end is examined. It is shown that the “boundary resonance” phenomenon can arise in some cases.  相似文献   

13.
Static elasticity problems for a half-plane and a strip weakened by a rectilinear transverse crack are studied. In each case, the upper boundary of the body is reinforced by a flexible patch. Various versions of conditions on the lower boundary are considered in the case of the strip. The crack is maintained in the open state by distributed normal forces. The method of generalized integral transforms reduces solving the problem for the equations of equilibriumto solving a singular integral equation of the first kind with the Cauchy kernel with respect to the derivative of the crack opening function. The solutions of the integral equation are constructed by the small parameter and collocation methods for various combinations of the geometric and physical parameters of the problem, and the structure of the solutions is analyzed. The values of the stress intensity factor (SIF) near the crack vertex are obtained.  相似文献   

14.
The interaction of a plane harmonic longitudinal wave with a thin circular elastic inclusion is considered. The wave front is assumed to be parallel to the inclusion plane. Since the inclusion is thin, the matrix-inclusion interface conditions (perfect bonding) are formulated on the mid-plane of the inclusion. The bending displacements of the inclusion are determined from the bending equation for a thin plate. The problem is solved using discontinuous Lamé solutions for harmonic vibrations. Therefore, the problem can be reduced to the Fredholm equation of the second kind for a function associated with the discontinuity of normal stresses on the inclusion. The equation obtained is solved by the method of mechanical quadratures using Gaussian quadrature formulas. Approximate formulas for the stress intensity factors are derived. Results from a numerical analysis of the dependence of the SIFs on the dimensionless wave number and the stiffness of the inclusion are presented __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 16–21, May 2008.  相似文献   

15.
The dynamic contact problem of a plane punch motion on the boundary of an elastic half-plane is considered. The punch velocity is constant and does not exceed the Rayleigh wave velocity. The moving punch deforms the elastic half-plane penetrating into it so that the punch base remains parallel to itself at all times. The contact problem is reduced to solving a two-dimensional integral equation for the contact stresses whose two-dimensional kernel depends on the difference of arguments in each variable. A special approximation to the kernel is used to obtain effective solutions of the integral equation. All basic characteristics of the problem including the force of the punch elastic action on the elastic half-plane and the moment stabilizing the punch in the horizontal position in the process of penetration are obtained. A similar problem was considered in [1] and earlier in the “mode of steady-state motions” in [2, 3] and in other publications.  相似文献   

16.
利用满足Laplace方程,线性化自由面条件及无穷远处条件的Havelock兴波源涵数,建立了关于常航速稳态船波势函数的边界积分方程.针对这个积分方程,建立了相应的数值计算方法,编制了一般三维问题的边界元法计算机程序,可用来计算全潜和半潜物体的稳态绕流场及船舶兴波阻力.  相似文献   

17.
A mixed problem is solved for a multiply connected half-plane with circular openings. Punches rigidly mated to the half-plane act on the rectilinear boundary. By using an analytic continuation through the unloaded parts of the rectilinear boundary and solving the obtained linear-conjunction problem for the slits of the multiply connected domain, the general representation of the complex potential containing unknown functions is found. These functions are holomorphic outside the openings and determined from the boundary conditions on the opening periphery and some additional equilibrium conditions for the punches. The indicated boundary conditions are satisfied with the help of the least-squares method. In the case where a punch acts on the boundary of a half-plane with one opening, the effects of the punch width and the relative position of the punch and the opening on the stress concentration and distribution are numerically evaluated  相似文献   

18.
The classical problem of wave diffraction on a half-plane with boundary conditions of different types and its generalizations to elastic media are considered. As a solution method it is proposed to combine the Fourier method of separation of variables and the series summation technique based on the use of integral representations of Bessel functions. The analytic solutions thus obtained are equally efficient in the near- and far-field diffraction regions. The two-term singularity at a corner point (in stresses for elastic media and in the velocity for acoustic media) was discovered for the first time. The knowledge of singularities in the scalar problem allowed one to construct the solution of the vector problem of elastic longitudinal wave diffraction. It is investigated how different types of boundary conditions on both sides of the half-plane affect the solution behavior in the far-field region. Possible physical interpretations of the obtained results are given.  相似文献   

19.
A numerical solution methodology is proposed herein to investigate the nonlinear forced vibrations of Euler–Bernoulli beams with different boundary conditions around the buckled configurations. By introducing a set of differential and integral matrix operators, the nonlinear integro-differential equation that governs the buckling of beams is discretized and then solved using the pseudo-arc-length method. The discretized governing equation of free vibration around the buckled configurations is also solved as an eigenvalue problem after imposing the boundary conditions and some complicated matrix manipulations. To study forced and nonlinear vibrations that take place around a buckled configuration, a Galerkin-based numerical method is applied to reduce the partial integro-differential equation into a time-varying ordinary differential equation of Duffing type. The Duffing equation is then discretized using time differential matrix operators, which are defined based on the derivatives of a periodic base function. Finally, for any given magnitude of axial load, the pseudo -arc-length method is used to obtain the nonlinear frequencies of buckled beams. The effects of axial load on the free vibration, nonlinear, and forced vibrations of beams in both prebuckling and postbuckling domains for the lowest three vibration modes are analyzed. This study shows that the nonlinear response of beams subjected to periodic excitation is complex in the postbuckling domain. For example, the type of boundary conditions significantly affects the nonlinear response of the postbuckled beams.  相似文献   

20.
The forced vibrations of a cylindrical orthotropic shell are studied. Two types of boundary conditions on the outer surface are examined considering that the displacement vector prescribed on the inner surface varies harmonically with time. Asymptotic solutions of associated dynamic equations of three-dimensional elasticity are found. Amplitudes of forced vibrations are determined and conditions under which resonance occurs are established. Boundary-layer functions are defined. The rate of their decrease with distance from the ends inside the shell is determined. A procedure of joining solutions for the internal boundary-layer problem is outlined in the case for the, if clamping boundary conditions are prescribed at the ends  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号