首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An established sieve mechanism model for microfiltration was modified to incorporate elliptical pore shapes that arise from uni-axial elongation of track-etch (TE) membranes. The particular membranes investigated were poly(ethylene teraphthalate) TE membranes with an average pore size of 0.6 μm and elongations up to 35.6%. The modified sieve theory predicts that a membrane that has undergone a 35.6% elongation allows for twice the throughput compared to the original membrane with circular pores, while maintaining the same removal ability for a solution containing 1 μm particles.  相似文献   

2.
We have recently proposed a new method for generating uniformly sized microbubbles from Shirasu porous glass (SPG) membranes with a narrow pore size distribution. In this study, to obtain a high gas permeation rate through SPG membranes in microbubble formation process, asymmetric SPG membranes were used. At the transmembrane/bubble point pressure ratio of less than 1.50, uniformly sized microbubbles with a bubble/pore diameter ratio of approximately 9 were generated from an asymmetric SPG membrane with a mean pore diameter of 1.58 μm and a skin-layer thickness of 12 ± 2 μm at a gaseous-phase flux of 2.1–24.6 m3 m−2 h−1, which was much higher than that through a symmetric SPG membrane with the same pore diameter. This is mainly due to the much smaller membrane resistance of the asymmetric SPG membrane. Only 0.27–0.43% of the pores of the asymmetric SPG membrane was active under the same conditions. The proportion of active pores increased with a decrease in the thickness of skin layer. In contrast to the microbubble formation from asymmetric SPG membranes, polydispersed larger bubbles were generated from asymmetric porous ceramic membranes used in this study, due to the surface defects on the skin layer. The surface defects were observed by the scanning electron microscopy and detected by the bubble point method.  相似文献   

3.
Membrane emulsification of unrefined pumpkin seed oil was performed using microengineered flat disc membranes on top of which a paddle blade stirrer was operated to induce surface shear. The membranes used were fabricated by galvanic deposition of nickel onto a photolithographic template and contained hexagonal arrays of uniform cylindrical pores with a diameter of 19 or 40 μm and a pore spacing of 140 μm. The uniformly sized pumpkin seed oil drops with span values less than 0.4 were obtained at oil fluxes up to 640 L m−2 h−1 using 2 wt.% Tween 20 (polyoxyethylene sorbitan monolaurate) or 2–10 wt.% Pluronic F-68 (polyoxyethylene–polyoxypropylen copolymer) as an aqueous surfactant solution. Pumpkin seed oil is rich in surface active ingredients that can be adsorbed on the membrane surface, such as free fatty acids, phospholipids, and chlorophyll. The adsorption of these components on the membrane surface gradually led to membrane wetting by the oil phase and the formation of uniform drops was achieved only for dispersed phase contents less than 10 vol.%. At high oil fluxes, Pluronic F-68 molecules present at a concentration of 2 wt.% could not adsorb fast enough, on the newly formed oil drops, to stabilise the expanding interface.  相似文献   

4.
To investigate the effect of the droplet/pore size ratio on membrane demulsification, water-in-oil (W/O) emulsions with uniform-sized droplets was demulsified by permeation through Shirasu-porous-glass (SPG) membranes with a narrow pore size distribution at mean droplet/pore diameter ratios of 0.52–5.75. At transmembrane pressures above a critical pressure, the water droplets larger than the membrane pore size were demulsified, where the SPG membrane acted as a coalescer because the hydrophilic membrane surface had a high affinity for the water droplets. By contrast, at transmembrane pressures below the critical pressure, the larger water droplets were all retained by the membrane due to the sieving effect of the uniform-sized pores. When a W/O emulsion with a mean droplet diameter of 2.30 μm was allowed to permeate through a membrane with a mean pore diameter of 0.86 μm, the demulsification efficiency increased with increasing transmembrane pressure, to a maximum value of 91% at a transmembrane pressure of 392 kPa, and then decreased, while the transmembrane flux increased almost linearly with increasing transmembrane pressure. The demulsification efficiency was higher for higher water phase content and lower concentration of the surfactant, tetraglycerin condensed ricinoleic acid ester, in the emulsions due to the reduction of the emulsion stability.  相似文献   

5.
Irregular porous carbon spheres were successfully prepared from Na2SnO3 coated corn porous starch by carbonization. The product was characterized with X-ray diffraction and scanning electron microscope (SEM). It is verified that the irregular porous carbon spheres are composed of disordered carbon, and the skeleton and pores of the corn porous starch was well preserved after carbonization. The pore size of the irregular porous carbon spheres is almost the same, which is similar to that of the porous starch. And the pore size decreases from about 0.91 μm to 0.53 μm measured from the SEM pictures. The texture of the irregular porous carbon spheres is mainly determined by that of porous starch.  相似文献   

6.
Asymmetrical thin membranes of SrCe0.95Y0.05O3−δ (SCY) were prepared by a conventional and cost-effective dry pressing method. The substrate consisted of SCY, NiO and soluble starch (SS), and the top layer was the SCY. NiO was used as a pore former and soluble starch was used to control the shrinkage of the substrate to match that of the top layer. Crack-free asymmetrical thin membranes with thicknesses of about 50 μm and grain sizes of 5–10 μm were successfully pressed on to the substrates. Hydrogen permeation fluxes (JH2) of these thin membranes were measured under different operating conditions. At 950 °C, JH2 of the 50 μm SCY asymmetrical membrane towards a mixture of 80% H2/He was as high as 7.6 × 10−8 mol/cm2 s, which was about 7 times higher than that of the symmetrical membranes with a thickness of about 620 μm. The hydrogen permeation properties of SCY asymmetrical membranes were investigated and activation energies for hydrogen permeation fluxes were calculated. The slope of the relationship between the hydrogen permeation fluxes and the thickness of the membranes was −0.72, indicating that permeation in SCY asymmetric membranes was controlled by both bulk diffusion and surface reaction in the range investigated.  相似文献   

7.
A mesoporous γ-Al2O3 membrane was produced by the sol gel dipping technique, followed by a thermal treatment (calcination and sintering). Different sintering temperatures were applied, which led to membranes with an average pore diameter ranging from 8.7 to 3.4 nm, the latter one corresponding to a MWCO of 900 Da.Salt retention was very much dependent on the pH of the solution as such membranes have an amphoteric character. Minimal salt retention was found at the isoelectric point (pH 7.5). Experiments were carried out with NaCl, MgCl2 and LaCl3 at different concentrations and in both single salt solutions and mixtures. The results are interpreted in terms of Donnan exclusion and in terms of the formation of an electrical double layer in the pores.Dynamic corrosion tests showed that some corrosion occurs at a pH of 2 or lower.  相似文献   

8.
In this paper, we have reported the preparation of low cost γ-Al2O3 membrane on a macroporous clay support by dip-coating method. For the synthesis of γ-Al2O3 top layer on the support, a stable boehmite sol is prepared using aluminium chloride salt as a starting material by sol–gel route. The structural properties of the composite membrane as well as γ-Al2O3 powder is carried out using scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption–desorption isotherm data, Fourier transform infrared analysis (FTIR) and dynamic light scattering (DLS) analysis. The mean particle size of the boehmite sol used for coating is found to be 30.9 nm. The pore size distribution of the γ-Al2O3–clay composite membrane is found to be in the range of 5.4–13.6 nm. Separation performance of the membrane in terms of flux and rejection of single salts solution such as MgCl2 and AlCl3 as a function of pH, salt concentration and applied pressure is also studied. The rejection and flux behavior are found to be strongly dependent on electrostatic interaction between the charged molecules and γ-Al2O3–clay composite membrane. The intrinsic rejection has been determined by calculating the concentration at membrane surface (Cm) using Speigler–Kedem model. It is found that the observed rejection shows anomalous trend with increase in applied pressure and the intrinsic rejection increases with increase in applied pressure, a trend typical of the separation of electrolyte through charged membranes. At acidic pH, both the salt solution shows higher rejection. With increase in the salt concentration, observed rejection of salt decreases due to the enhanced concentration polarization. The maximum rejection of MgCl2 and AlCl3 is found to be 72% and 88%, respectively for salt concentration of 3000 ppm.  相似文献   

9.
Determination of aniline and 2-chloroaniline in polymer industrial wastewater was examined using high-performance liquid chromatography with on-line microdialysis. After dilution, aniline and 2-chloroaniline in the sample were diffused through a cellular dialysis membrane into the perfusion stream under controlled conditions. Conditions for obtaining optimum dialysis efficiency such as flow-rate and polarity modifier in the perfusion stream, pH and added salt in the sample solution, as well as chromatographic conditions were investigated. The results indicate that the dialysis achieved at a sample matrix pH value of 9.5 with 0.1 M NaCl addition, and the perfusate at 10-μl/min flow-rate offered optimum dialysis efficiency. The aniline and 2-chloroaniline were well separated in an acceptable time on a reversed-phase C18 column eluted with 40% aqueous methanol solution at pH 7.0 and 1.0 ml/min flow-rate. The proposed method provided a very simple procedure to determine aniline and 2-chloroaniline in wastewater. Application was illustrated by the analysis of aniline and 2-chloroaniline in wastewater released from a polymer factory.  相似文献   

10.
Mesoporous anatase was prepared following sol–gel and using urea as template. The influence of calcination temperature on the phase stability, nanocrystal/aggregate size, pore size distribution and specific surface area as well as on the acid–base behavior in aqueous solutions was studied using X-ray diffraction, laser-Raman and diffuse reflectance spectroscopies, scanning electron microscopy and laser scattering as well as N2 adsorption–desorption isotherms and potentiometric mass titrations.The crystal structure was kept constant upon calcination over the whole temperature range, 200–500 °C. In this range anatase is constituted from primary nanocrystals. These are assembled into larger, rather spherical, clusters of about 30–40 nm and then into aggregates of various sizes (0.2–0.3 μm and 2–100 μm) with a distribution centered at about 12 μm. Increase of the calcination temperature caused an increase in the size of the primary nanocrystals from 8.1 nm at 200 °C to 17.1 nm at 500 °C, whereas calcination does not influence the morphology at micro-scale. Moreover, increase of the calcination temperature from 200 °C to 500 °C brings about a shift in the mean pore diameter from 47 nm to 91 nm accompanied by a decrease in the specific surface area and pore volume. The above effects were related with the aforementioned increase in the size of the primary nanocrystals. The value of pzc and the values of surface charge determined at various pH do not practically depend on the calcination temperature. The absence of pore space confinement effects was explained in terms of the structure and size of the interface development between the anatase surface and the electrolytic solution.  相似文献   

11.
The selective, filtration, and electrokinetic properties of an OPMN-KMZ nanofiltration membrane are studied with respect to the aqueous solutions of the chlorides of alkali metals and ammonium within a concentration range from 10–4 to 10–1 mol/l. The dependences of the charge of the membrane pore surface and the rejection of cations of centinormal solutions of the aforementioned salts and protons on pH are obtained. The membrane isoelectric points corresponding to the centinormal solution of each salt are determined. The minima of the membrane selectivity with respect to the corresponding cations of salts are revealed in the region of isoelectric points. It is shown that, for univalent cations in the regime of convective diffusion, the coefficient of electrolyte rejection by the membrane correlates with the adsorption potential of cations (counterions) at the pore surface of a selective layer.  相似文献   

12.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step.  相似文献   

13.
Formation of porous Ti–6Al–4V nanostructure biomaterial was described. The alloy was prepared by mechanical alloying followed by pressing, sintering and subsequent anodic electrochemical etching in 1 M H3PO4 + 2% HF electrolyte at 10 V for 30 min. Mechanically alloyed Ti–6Al–4V has nanostructure with grain size of about 35 nm and large grain boundaries volume fraction, which essentially improve etching process. The electrolyte penetrates sintered compacts through the grain boundaries, resulting in effective material removing and pores formation. The pore diameter reaches up to 60 μm, which is very attractive for strong bonding with bone. The anodization of the microcrystalline alloy ingot results in selective etching, revealing of the two-phase structure with relatively flat surface. The corrosion properties were investigated in Ringer’s solution. Mechanically alloyed samples shows worse corrosion resistance than the bulk microcrystalline alloy ingot, but electrochemical etching results in improving corrosion resistance.  相似文献   

14.
In this work, the suitability of the microporous membrane liquid–liquid extraction (MMLLE) technique for the concentration of several organophosphate esters (OPs) in water samples is assessed. Analytes were first extracted into a few microlitres of an organic solvent, immobilized in the pores of a hollow polypropylene membrane, and then determined by gas chromatography with nitrogen–phosphorus detection (GC–NPD). Main parameters controlling the efficiency of the extraction step were identified and their effects on the performance of the technique discussed. Under final working conditions, 2 cm long polypropylene membranes, containing about 7 μL of octanol in the pores, were dipped in a glass vial filled with 115 mL of water with a 30% of sodium chloride. Extractions were carried out for 12 h, at room temperature, under magnetic stirring. After that, analytes were recovered from the membrane with 0.2 mL of ethyl acetate. This extract was mixed with the internal standard (50 μL of a tripentyl phosphate solution in the same solvent) and finally reduced to ca. 50 μL. Overall enrichment factors for the optimized method ranged from 35 to 1400 times, and the achieved limits of quantification from 0.008 to 0.12 ng mL−1, depending on the considered compound. Globally, the method showed an acceptable linearity and precision for all species, except for tris(2-ethylhexyl) phosphate (TEHP). Performance of the MMLLE approach is compared with that reported for other solid- and liquid-phase microextraction techniques and its suitability for the analysis of real water samples discussed.  相似文献   

15.
This research focuses on removal of Fe(III) from aqueous solution using chitosan–magnetite nanocomposites as potential sorbent. The presence of nanosized magnetic particles within the nanocomposites was confirmed by TEM and SAED analysis. The particles with diameter 508 μm and 84 μm, follow Frendlich sorption isotherm at 30 °C, and the Frendlich constants (KF, 1/n) have been found to be 5.974 mg g−1, 2.66 and 35.98 mg g−1, 1.385, respectively. Out of various kinetic models, the experimental data for dynamic uptake of Fe(III) is best fitted on ‘pseudo-second order’ kinetic model. The linear nature of plots between log (% sorption) and log (time) is indicative of intra-particle diffusion. For the particles with diameters 508 μm and 84 μm, the value of kid was found to be 1.78 mg l−1 min−0.5 and 2.13 mg l−1 min−0.5. The sorption mean free energy from the Dubinin–Radushkevic isotherm was found to be 7.04 kJ mol−1 indicating chemical nature of sorption. The increase in chitosan content in sorbent particles is found to enhance the Fe(III) uptake. The various thermodynamic parameters have also been evaluated. Finally, the presence of Cu2+ ions in the sorbate is found to decrease the uptake of Fe(III).  相似文献   

16.
In a cation exchange liquid membrane-aqueous alkali metal chloride system, diffusional flux of alkali metal ion driven by proton was observed. A supported liquid membrane formed on a Teflon filter by impregnating it with stearic acid-doped 1-octanol was used. The internal aqueous phase contained KCl and HCl, and the external aqueous phase also contained KCl. The initial concentrations of K+ ions of both phases were 1×10−1 mol dm−3 for all the measurements. The concentration of HCl in the internal solution was kept at 1×10−2 mol dm−3. The pH of the external solution was changed successively with HCl, appropriate buffer solution, or KOH. The pH dependence of membrane potential showed hysteresis loop in the range from neutral to alkaline pH, where reverse ion permeation was observed after the flux had been measured in the system with the external solution of an alkaline pH (pH 13). In the acidic range below neutral pH, the hysteresis of the membrane potential as well as reverse ion permeation was not observed. To elucidate the correlation between the appearance of hysteresis loop and the reverse ion permeation driven by proton across the membrane, the time course of the membrane potential in response to pH change was investigated. In the pH range where reverse permeation phenomena appeared, the time dependence of the membrane potential in nonsteady-state showed biphasic behavior. From the time course curve of the membrane potential, the total membrane potential was divided into the Donnan potential and the diffusion potential. From these findings, it was demonstrated that the diffusion potential was generated within the membrane only in the alkaline range where reverse ion permeation occurred. Analyzing the diffusional flux, the diffusion coefficient of potassium ion in the membrane was obtained taking the Donnan potential into account to be much greater than that in the membrane solvent. As a result of comparison of the diffusional fluxes measured by atomic absorption spectrometry and solution conductometry, the flux of the potassium ion was found to be significantly greater than that of the hydrogen ion in the opposite direction, especially at extremely high pH region. This implies the flows of hydroxide ions and neutralization reaction within the membrane facilitate the reverse ion permeation process of potassium ions.  相似文献   

17.
This paper presents an experimental and theoretical study on facilitated transport of lignosulfonate (LS) through a flat sheet supported liquid membrane using trioctylamine (TOA) as carrier and dichloroethane as diluent. The studies were carried out with various support materials and operating conditions (viz. carrier concentration, strip phase concentration, salt concentration, etc.) and their effects on the transport of LS. The results were analyzed to identify a suitable combination of support and operating condition that would yield best performance of the supported liquid membrane (SLM) in terms of fast and efficient transport of LS. The stability of the SLM was assessed in terms of loss of liquid from the pores of membrane support. The SLM is found to be stable till 10 h. Co-transport mechanism has been adopted in this work by using NaOH as the strip phase. It was observed that extraction of LS is increased with increase in concentration of NaOH up to a limiting value of 0.5 M NaOH. Difference of salt concentration between feed and strip phase considerably affect the separation process. The diffusional resistances of organic membrane (Δorg) and aqueous solution (Δaq) calculated from the permeation model, which is again a combination of three unique mechanisms viz., diffusion through a feed aqueous layer, a fast interfacial chemical reaction, and diffusion of carrier–complex through the organic membrane, are found to be 609.9 and 176.6 s cm−1, respectively. The values of the diffusion coefficient in the membrane (Dorg) and in the bulk organic phase (Dcomplex) are 1.67×10−9 and 6.68 × 10−8 m2s−1, respectively. The extraction of LS is about 90%. Nearly 43% of LS can be recovered at optimum condition.  相似文献   

18.
MFI membrane with high permeance was successfully synthesized on the macroporous (pore size of 3–4 μm) α-Al2O3 tubular support with a novel modified secondary growth method. Before the crystallization, the seeded support was wrapped with Teflon tape in order to focalize the growth of crystals in the region of seed layer. The as-synthesized membrane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and single-gas permeation testing. The results indicated that the as-synthesized membrane had a thickness of 6–8 μm similar to the thickness of the seed layer and exhibited high gas permeance. At room temperature, the permeance of H2 and the ideal separation factor of H2/SF6 reached 1.64 × 10−6 mol m−2 s−1 Pa−1 and 71, respectively. The permeance of single-gas increased with the increasing of temperature. The ideal separation factors of H2/i-C4H10 and H2/SF6 decreased with the increasing of temperature from 298 to 473 K. At 473 K, the ideal separation factors of H2/i-C4H10 and H2/SF6 were 12.16 and 11.08, which were still higher than their Knudsen ratios of 5.39 and 8.54, respectively.  相似文献   

19.
A method is developed for obtaining anisotropic composites based on the sulfonated cation-exchange MF-4SK and MK-40 membranes and the electroactive polymer polyaniline (PANI). The kinetics of aniline polymerization by successive diffusion in these membranes is investigated, and differences in the transport characteristics of the resulting MF-4SK/PANI and MK-40/PANI composites are identified. It is established from results of electroosmotic and diffusion experiments that the composite MF-4SK/PANI-1 membrane (after 1 h of aniline polymerization) suppresses electrolyte and water flow the most. Diffusion permeability drops by an order of magnitude, and water transport numbers are reduced by 50–70%. In the process of sodium chloride concentration by electrodialysis, the salt content of the concentrate increases by 50–70% with the composite MF-4SK/PANI-1 membrane compared to the base MF-4SK membrane and by 15–20% compared to the electrodialysis MK-40 membrane. Transport characteristics of the membrane pairs under investigation are calculated from the model of limiting concentration by electrodialysis: current efficiency, water transport numbers, osmotic and diffusion permeability. The dominant influence of the electroosmotic mechanism of water transport on the effect of salt solution concentration is established.  相似文献   

20.
Commercial Sartobind® porous cation exchanger membranes, based on stabilized regenerated cellulose and with sulfonic acid (S) or carboxylic acid groups (C), were analysed with respect to their pore structure in dry, slightly swollen and wet state by three microscopic methods, conventional scanning electron microscopy (SEM), environmental SEM (ESEM), and confocal laser scanning microscopy (CLSM). The dehydration behaviour of the membranes was in situ observed at varied vapour pressure in the chamber of the ESEM, indicating some deformations of the macropore structure (largest pore diameters up to 20 μm) and significant changes in dimension and mobility of smaller cellulose fibers within these macropores, both as function of water content of the membrane. The binding of mono-Cy5-labelled lysozyme inside fluoresceine-labelled and unlabelled Sartobind® membranes was monitored by CLSM. The characteristic fluorescence intensity distributions in areas of (146 μm × 146 μm) indicated that protein binding takes place predominately in a layer which is anchored to a fine cellulose fiber network and, to a lower degree, directly to thick cellulose fibers. Due to the limited thickness of this binding layer, a significant fraction of the macropores remained free of protein. Protein binding as function of concentration and incubation times was also monitored by CLSM and discussed related to the binding isotherms for the membrane Sartobind® S and C. Further, a flow-through cell for the in situ monitoring with CLSM of protein binding during the binding step was built, and the results obtained for binding of lysozyme in membranes Sartobind® S indicate this experiment can give very important information on the dynamic behaviour of porous membrane adsorbers during separation: the lateral microscopic resolution in the x, y plane enables the identification of different breakthrough times as function of the location (pore structure), and this information can help to explain possible reasons for axial dispersion (in z-direction) observed in breakthrough analyses of the same separation in a chromatography system. The combination of advanced microscopy with detailed investigations of static and dynamic protein binding will provide a better understanding of the coupling between mass transfer and reversible binding in membrane adsorbers onto separation performance, and it will provide valuable guide-lines for the development of improved membrane adsorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号