首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
We report a new kind of electrochemical molecular beacon, termed “electrochemically active–inactive switching molecular beacon”, for direct detection of DNA in homogenous solution. The electrochemical molecular beacon consists of a stable stem-loop oligonucleotide carrying two carminic acid moieties (acting as electrochemical reporter) attached at its termini. In a close form, the electrochemical signal is quenched because two carminic acid moieties are close enough to associate into dimer. In the presence of the complementary DNA target, the electrochemical molecular beacon undergoes a conformational transformation from closed (hairpin) to open (linear) structure, which is associated with an increase in electrochemical signal. We found that the electrochemical molecular beacon is as effective as conventional molecular beacon in signaling the presence of complementary target and discriminating targets that differ by a single nucleotide. The proposed electrochemical molecular beacon has a great potential for investigating the interactions of DNA-protein and developing electrochemical real-time polymerase chain reaction.  相似文献   

2.
Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real‐time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching‐free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.  相似文献   

3.
Appropriate labeling method of signal substance is necessary for the construction of multiplexed electrochemical immunosensing interface to enhance the specificity for the diagnosis of cancer. So far, various electrochemical substances, including organic molecules, metal ions, metal nanoparticles, Prussian blue, and other methods for an electrochemical signal generation have been successfully applied in multiplexed biosensor designing. However, few works have been reported on the summary of electrochemical signal substance applied in constructing multiplexed immunosensing interface. Herein, according to the classification of labeled electrochemical signal substance, this review has summarized the recent state-of-art development for the designing of electrochemical immunosensing interface for simultaneous detection of multiple tumor markers. After that, the conclusion and prospects for future applications of electrochemical signal substances in multiplexed immunosensors are also discussed. The current review can provide a comprehensive summary of signal substance selection for workers researched in electrochemical sensors, and further, make contributions for the designing of multiplexed electrochemical immunosensing interface with well signal.  相似文献   

4.
It is proved that there is a general stochastic equation, according to which any random process in the transient mode can be presented by spatially homogeneous Kramers-Moyal expansion. In the electrochemical stochastic diffusion, an integral of the fluctuation component of electrode potential over the time plays the role of spatial coordinate. Based on these two facts, we derived a spatially homogeneous Kramers-Moyal expansion for the propagator of electrochemical stochastic diffusion. By using the limiting transition to long observation times, we obtained a time and spatially homogeneous asymptotic Kramers-Moyal expansion for the propagator of asymmetric non-Gaussian electrochemical stochastic diffusion. Under the conditions of Gaussian electrochemical noise, the asymptotic Kramers-Moyal expansion turns into the Einstein stochastic diffusion equation. The method of determining time and spatially homogeneous asymptotic Kramers-Moyal expansion for the propagator of asymmetric non-Gaussian electrochemical stochastic diffusion may be useful in the stochastic theory of slow electrochemical discharge and in the electrochemical noise diagnostics.  相似文献   

5.
Nyholm L 《The Analyst》2005,130(5):599-605
During the last few years there has been a rapid increase in the use of electrochemical reactions in lab-on-a-chip devices. This development, which has so far mainly focussed on electrochemical detection in chip-based capillary electrophoresis, can be explained by the fact that electrochemical techniques and devices are particularly well-suited for inclusion in lab-on-a-chip systems. The most important reason for this is that the required electrodes can readily be manufactured and miniaturised without loss of analytical performance using conventional microfabrication methods. In this Research Highlight article, the developments during the last three years concerning electrochemical techniques for lab on-a-chip applications are discussed, with particular focus on emerging electrochemical methods for sample clean-up and preconcentration, electrochemical derivatisation and electrochemical detection in chip-based capillary electrophoresis.  相似文献   

6.
电化学聚合   总被引:4,自引:0,他引:4  
廖川平 《化学通报》2000,63(2):37-41
介绍了电化学聚合反应的定义、分类,机理和应用,阐述了电化学缩合反应的电化学加成聚合反应这两大类电化学聚合反应的本质差别,另外还提出了电化学氰基加成聚合反应的概念。  相似文献   

7.
由于个体的差异性和异质性作用,整体平均测量掩盖了个体的本征性质和电化学性能之间的关联.单体碰撞电化学作为一种强大而方便的电化学方法,已被用于研究超微电极上自由扩散的单个个体随机碰撞过程中的电化学行为.然而,个体的动态行为与其电化学反应过程息息相关.因此,对于单体动态电化学行为的研究可实时获取单体在电极界面上的动态电化学...  相似文献   

8.
贾铮 《化学通报》2005,68(2):106-110,134
组合电化学是一种新的电化学研究策略,通过设计和构建大量多样性的电极阵列,并对其进行高通量筛选和表征,快速、高效地实现了体系的电化学研究。本文综述了近年来进行的组合电化学研究,重点介绍了组合光学筛选方法、组合电化学合成方法以及电化学平行筛选方法,并探讨了各种方法的优势和存在的问题。  相似文献   

9.
周奇  张立敏  田阳 《电化学》2019,25(2):160-171
发展非电活性分子的活体电化学分析方法,对于解析这些物质在生理过程和病理过程中的作用具有重要研究意义. 本综述从三种分析策略出发,简要介绍了最近活体电化学传感器的研究进展:1)设计和筛选高选择性配体,通过将特异性的化学反应转换成电化学信号,发展了新型的非电活性分子的活体分析;2)利用微型孔道里的整流效应,结合特异性配体,建立了非电活性分子的新型分析平台;3)结合微电极阵列技术及同时分析多种输出信号的新型分析模式,实现活体中的多种非电活性物质的同时分析.  相似文献   

10.
原位电化学拉曼光谱是一种重要的光谱电化学技术.基于超微电极的原位电化学拉曼光谱将拉曼光谱反映的结构信息与电极表面的电化学过程从实验上严格对应和关联,为深刻理解电化学反应机理提供依据.本文综述了采用超微电极作为工作电极的原位电化学拉曼光谱的研究方法和应用进展,总结了应用超微电极作为工作电极开展电化学拉曼光谱实验的方法和具有表面增强拉曼活性的超微电极制备方法,展示了如何利用在超微电极表面获得的拉曼光谱与界面电化学过程的严格关联研究单个锌颗粒电化学氧化过程、吡啶分子在Au电极表面的电化学吸附过程,以及如何利用该技术能以高的信噪比和灵敏度同时测量光电流与分子反应这一特性研究对巯基苯胺选择性光氧化反应.采用超微电极作为工作电极的原位电化学拉曼光谱技术极大拓展了拉曼光谱技术的研究范围,有望成为探索(光)电化学反应的有力工具.  相似文献   

11.
电化学石英晶体微天平(EQCM)同时结合了电化学检测的高灵敏度和石英晶体微天平(QCM)可实时检测电极表面质量变化及阻尼的特点,在电化学研究中具有非常好的应用前景,已得到越来越广泛的应用.本文设计了一种通用型的EQCM电解池,用恒电流电沉积铜的方法测定了QCM Pt电极的质量灵敏因子Cf,分析了Cf实验测定值与理论值偏差的原因,并讨论了在所设计的EQCM电解池中QCM Pt电极的使用范围,为进一步开展EQCM的应用研究提供可靠的基础.  相似文献   

12.
Nanomaterial-enabled electrochemical sensors are designed as an economical, efficient, and user-friendly analytical tool for on-site and routine nitrate analysis over a wide range of environmental samples. The remarkable advances and tunable attributes of nanomaterials have greatly improved the analytical performance of electrochemical nitrate sensors. In this review, a comprehensive elucidation of the recent advances in nanomaterial-based electrochemical nitrate sensors is presented. The review firstly provides a general introduction, followed by typical electrochemical sensing methods. The next two sections detail various nanomaterials, including graphene derivatives, carbon nanotubes/fibers, metal/bimetal/metal oxide nanoparticles, and conducting polymers for modifying electrodes in enzymatic and non-enzymatic electrochemical nitrate sensors. Finally, the perspectives and current challenges in achieving real-world applications of nanomaterial-based electrochemical nitrate sensors are outlined.  相似文献   

13.
Electroanalysis has obtained considerable progress over the past few years, especially in the field of electrochemical sensors. Broadly speaking, electrochemical sensors include not only conventional electrochemical biosensors or non-biosensors, but also emerging electrochemiluminescence (ECL) sensors and photoelectrochemical (PEC) sensors which are both combined with optical methods. In addition, various electrochemical sensing devices have been developed for practical purposes, such as multiplexed simultaneous detection of disease-related biomarkers and non-invasive body fluid monitoring. For the further performance improvement of electrochemical sensors, material is crucial. Recent years, a kind of two-dimensional (2D) nanomaterial MXene containing transition metal carbides, nitrides and carbonitrides, with unique structural, mechanical, electronic, optical, and thermal properties, have attracted a lot of attention form analytical chemists, and widely applied in electrochemical sensors. Here, we reviewed electrochemical sensors based on MXene from Nov. 2014 (when the first work about electrochemical sensor based on MXene published) to Mar. 2021, dividing them into different types as electrochemical biosensors, electrochemical non-biosensors, electrochemiluminescence sensors, photoelectrochemical sensors and flexible sensors. We believe this review will be of help to those who want to design or develop electrochemical sensors based on MXene, hoping new inspirations could be sparked.  相似文献   

14.
The detection of chemical warfare agents (CWA) has become a worldwide security concern in light of the many recent international threats utilizing nerve agents. Among a variety of detection methods that have been developed for CWA, electrochemical sensors offer the unrivaled merits of high sensitivity, specificity and operational simplicity. Recent insights into novel fabrication methodologies and electrochemical techniques have resulted in the demonstration of electrochemical sensors able to address many of the limitations of conventional methodologies. This article reviews recent advances and developments in the field of electrochemical biosensors based detection of nerve agent and their utility for decentralized threat detection. With continued innovations and attention to key challenges, it is expected that electrochemical sensors will play a pivotal role in the CWA detection scenario. This review concludes with the implications of the electrochemical sensing platforms along with future prospects and challenges.  相似文献   

15.
离子液体在导电高分子中的应用   总被引:1,自引:0,他引:1  
综述了离子液体作为介质,在导电高分子合成及其电化学性能测试,以及导电高分子电化学器件中(电化学电容、发光电化学池、驱动器、太阳能电池)的最新研究进展。在此基础上。展望了离子液体在导电高分子中的应用前景。  相似文献   

16.
The results of this work prove that electrochemical reactions are involved in the whole corrosion process of pure Fe with a solid NaCl deposit in water vapor at 600 °C. The interaction of chemical and electrochemical reactions accelerates the corrosion rate of pure Fe significantly. The electrochemical reaction is coupled with a preceding chemical reaction process (ce), in which Fe first reacts chemically with NaCl and water vapor to generate HCl(g). And then, the electrochemical reaction proceeds via a one-electron electrochemical reduction to form H2.  相似文献   

17.
18.
Over the past years, great attention has been given to the developments of boron-doped diamond (BDD) materials in various fields because of the advantages of electrochemical features, such as large potential range and low background current. This minireview aims to present the recent progress of in situ electrochemical spectroscopy for BDD electrode reactions. After a concise state of the widely used in situ electrochemical spectroscopy techniques, including in situ electrochemical Raman, infrared, and electron paramagnetic resonance spectroscopy, the current progress of BDD electrode reactions using in situ electrochemical spectroscopy has been summarized. Finally, challenges and perspectives for the tendency of the BDD study via in situ electrochemistry are provided, of which several potential electrochemical combined technologies relating to the mechanism exploration of BDD are proposed.  相似文献   

19.
This work presents a detailed study of the mechanism for the electrochemical deposition of conjugated polymers on anodes in centrifugal fields. The rate of the electrochemical deposition of polyaniline was affected significantly by a centrifugal acceleration force of 315 g. However, no centrifugal effects were observed on the electrochemical deposition of poly(3,4-ethylenedioxythiophene). It was found that the degree of the centrifugal effect generated depended greatly on the size of the oligomer aggregates just before their deposition. To further confirm the influence of size on electrochemical systems under centrifugal fields, we also carried out an electrochemical redox reaction using various sizes of vinylferrocene-immobilized polystylene latex particles.  相似文献   

20.
Microbial electrochemical systems utilize the electrochemical interaction between microorganisms and electrode surfaces to convert chemical energy into electrical energy, offering a promise as technologies for wastewater treatment, bioremediation, and biofuel production. Recently, growing research attention has been devoted to the development of microbial electrochemical sensrs as biosensing platforms. Microbial electrochemical sensors are a type of microbial electrochemical technology (MET) capable of sensing through the anodic or the cathodic electroactive microorganisms and/or biofilms. Herein, we review and summarize the recent advances in the design of microbial electrochemical sensing approaches with a specific overview and discussion of anodic and cathodic microbial electrochemical sensor devices, highlighting both the advantages and disadvantages. Particular emphasis is given on the current trends and strategies in the design of low-cost, convenient, efficient, and high performing METs with different biosensing applications, including toxicity monitoring, pathogen detection, corrosion monitoring, as well as measurements of biological oxygen demand, chemical oxygen demand, and dissolved oxygen. The conclusion provides perspectives and an outlook to understand the shortcomings in the design, development status, and sensing applications of microbial electrochemical platforms. Namely, we discuss key challenges that limit the practical implementation of METs for sensing purposes and deliberate potential solutions, necessary developments, and improvements in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号