首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to examine the photoisomerization dynamics in the excited state of bacteriorhodopsin. Near-IR stimulated emission is observed in the FSRS probe window that decays with a 400-600-fs time constant. Additionally, dispersive vibrational lines appear at the locations of the ground-state vibrational frequencies and decay with a 260-fs time constant. The dispersive line shapes are caused by a nonlinear effect we term Raman initiated by nonlinear emission (RINE) that generates vibrational coherence on the ground-state surface. Theoretical expressions for the RINE line shapes are developed and used to fit the spectral and temporal evolution of the spectra. The rapid 260-fs decay of the RINE peak intensity, compared to the slower evolution of the stimulated emission, indicates that the excited-state population moves in approximately 260 fs to a region on the potential energy surface where the RINE signal is attenuated. This loss of RINE signal is best explained by structural evolution of the excited-state population along multiple low-frequency modes that carry the molecule out of the harmonic photochemically inactive Franck-Condon region and into the photochemically active geometry.  相似文献   

2.
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.  相似文献   

3.
Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.  相似文献   

4.
The dynamics of the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline (10-HBQ) and the associated coherent nuclear motion were investigated in solution by femtosecond absorption spectroscopy. Sub-picosecond transient absorption measurements revealed spectral features of the stimulated emission and absorption of the keto excited state (the product of the reaction). The stimulated emission band appeared in the 600-800-nm region, corresponding to the wavelength region of the steady-state keto fluorescence. It showed successive temporal changes with time constants of 350 fs and 8.3 ps and then disappeared with the lifetime of the keto excited state (260 ps). The spectral feature of the stimulated emission changed in the 350-fs dynamics, which was likely assignable to the intramolecular vibrational energy redistribution in the keto excited state. The 8.3-ps change caused a spectral blue shift and was attributed to the vibrational cooling process. The excited-state absorption was observed in the 400-600-nm region, and it also showed temporal changes characterized by the 350-fs and 8.3-ps components. To examine the coherent nuclear dynamics (nuclear wavepacket motion) in excited-state 10-HBQ, we carried out pump-probe measurements of the stimulated emission and absorption signals with time resolution as good as 27 fs. The obtained data showed substantially modulated signals due to the excited-state vibrational coherence up to a delay time of several picoseconds after photoexcitation. This means that the vibrational coherence created by photoexcitation in the enol excited state is transferred to the product. Fourier transform analysis indicated that four frequency components in the 200-700-cm(-1) region contribute to the oscillatory signal, corresponding to the coherent nuclear motions in excited-state 10-HBQ. Especially, the lowest-frequency mode at 242 cm(-1) is dephased significantly faster than the other three modes. This observation was regarded as a manifestation that the nuclear motion of the 242-cm(-1) mode is correlated with the structural change of the molecule associated with the reaction (the reaction coordinate). The 242-cm(-1) mode observed in excited-state 10-HBQ was assigned to a vibration corresponding to the ground-state vibration at 243 cm(-1) by referring to the results of resonance Raman measurements and density functional calculations. It was found that the nuclear motion of this lowest-frequency mode involves a large displacement of the OH group toward the nitrogen site as well as in-plane skeletal deformation that assists the oxygen and nitrogen atoms to come closer to each other. We discuss the importance of the nuclear wavepacket motion on a multidimensional potential-energy surface including the vibrational coordinate of the low-frequency modes.  相似文献   

5.
We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond time-resolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited electronic state of the radical cation. In this state a coherent torsional vibration of the bromomethylene groups with a period of 700 fs is started and probed by photoinduced fragmentation of the molecular cation. The vibrational coherence dephases with the decay of the excited state to the ground state of the cation in 1.6 ps. The real-time probing of the excited-state dynamics is made possible by exploiting the interaction between the two bromine chromophores and its dependence on molecular conformation. This experiment therefore illustrates the applicability of the concept of probing ultrafast molecular dynamics using the intramolecular interaction between two chromophores.  相似文献   

6.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

7.
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.  相似文献   

8.
Femtosecond time-resolved absorption spectroscopy has been used to elucidate the excited-state dynamics associated with formation of the (2)E excited state in a Cr(III) transition metal complex. Cr(acac)(3) (where acac is the deprotonated monoanion of acetylacetone) exhibits monophasic decay kinetics with tau = 1.1 +/- 0.1 ps following excitation into the lowest-energy ligand-field absorption band; the time constant is found to be independent of both excitation and probe wavelength across the entire (4)A(2) --> (4)T(2) absorption envelope. The lack of a significant shift in the excited-state absorption spectrum combined with the observed spectral narrowing is consistent with an assignment of this process as vibrational cooling (k(vib)) in the (2)E state. The data on Cr(acac)(3) indicate that intersystem crossing associated with the (4)T(2) --> (2)E conversion occurs at a rate k(ISC) > 10(13) s(-)(1) and furthermore competes effectively with vibrational relaxation in the initially formed (4)T(2) state. Excitation into the higher energy (4)LMCT state (lambda(ex) = 336 nm) gives rise to biphasic kinetics with tau( 1) = 50 +/- 20 fs and tau( 2) = 1.2 +/- 0.2 ps. The slower component is again assigned to vibrational cooling in the (2)E state, whereas the subpicosecond process is attributed to conversion from the charge-transfer to the ligand-field manifold. In addition to detailing a process central to the photophysics of Cr(III), these results reinforce the notion that the conventional picture of excited-state dynamics in which k(vib) > k(IC) > k(ISC) does not generally apply when describing excited-state formation in transition metal complexes.  相似文献   

9.
The ultrafast relaxation of aqueous iron(II)-tris(bipyridine) upon excitation into the singlet metal-to-ligand charge-transfer band (1MLCT) has been characterized by femtosecond fluorescence up-conversion and transient absorption (TA) studies. The fluorescence experiment shows a very short-lived broad 1MLCT emission band at approximately 600 nm, which decays in < or =20 fs, and a weak emission at approximately 660 nm, which we attribute to the 3MLCT, populated by intersystem crossing (ISC) from the 1MLCT state. The TA studies show a short-lived (<150 fs) excited-state absorption (ESA) below 400 nm, and a longer-lived one above 550 nm, along with the ground-state bleach (GSB). We identify the short-lived ESA as being due to the 3MLCT state. The long-lived ESA decay and the GSB recovery occur on the time scale of the lowest excited high-spin quintet state 5T2 lifetime. A singular value decomposition and a global analysis of the TA data, based on a sequential relaxation model, reveal three characteristic time scales: 120 fs, 960 fs, and 665 ps. The first is the decay of the 3MLCT, the second is identified as the population time of the 5T2 state, while the third is its decay time to the ground state. The anomalously high ISC rate is identical in [RuII(bpy)3]2+ and is therefore independent of the spin-orbit constant of the metal atom. To reconcile these rates with the regular quasi-harmonic vibrational progression of the 1MLCT absorption, we propose a simple model of avoided crossings between singlet and triplet potential curves, induced by the strong spin-orbit interaction. The subsequent relaxation steps down to the 5T2 state dissipate approximately 2000 cm-1/100 fs. This rate is discussed, and we conclude that it nevertheless can be described by the Fermi golden rule, despite its high value.  相似文献   

10.
Time-resolved transient absorption spectroscopy with sub-9 fs ultrashort laser pulses in the deep-ultraviolet (DUV) region is reported for the first time. Single 8.7 fs DUV pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. Electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of thymine over the full spectral range using a 128-channel lock-in detector. Vibrational modes of the electronic ground state and excited states can be observed as well as the decay dynamics of the electronic excited state. Information on the initial phase of the vibrational modes is extracted from the measured difference absorbance trace, which contains oscillatory structures arising from the vibrational modes of the molecule. Along with other techniques such as time-resolved infrared spectroscopy, spectroscopy with sub-9 fs DUV pulses is expected to contribute to a detailed understanding of the photochemical dynamics of biologically significant molecules that absorb in the DUV region such as DNA and amino acids.  相似文献   

11.
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.  相似文献   

12.
A femtosecond luminescence and transient absorption study of fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is reported. An emission with a lifetime component of 230 fs in the spectral region 500–560 nm is assigned to the population equilibration between electronic substates of the lowest excited triplet state, with energy dissipation by intramolecular vibrational redistribution. At shorter wavelengths a strong emission with a faster decay was observed and is attributed to a state with a higher admixture of singlet character. A slower decay on a 3 ps time scale is attributed to vibrational cooling. The results contribute to an understanding of the photophysics of transition metal complexes.  相似文献   

13.
To better understand DNA photodamage, several nucleosides were studied by femtosecond transient absorption spectroscopy. A 263-nm, 150-fs ultraviolet pump pulse excited each nucleoside in aqueous solution, and the subsequent dynamics were followed by transient absorption of a femtosecond continuum pulse at wavelengths between 270 and 700 nm. A transient absorption band with maximum amplitude near 600 nm was detected in protonated guanosine at pH 2. This band decayed in 191 +/- 4 ps in excellent agreement with the known fluorescence lifetime, indicating that it arises from absorption by the lowest excited singlet state. Excited state absorption for guanosine and the other nucleosides at pH 7 was observed in the same spectral region, but decayed on a subpicosecond time scale by internal conversion to the electronic ground state. The cross section for excited state absorption is very weak for all nucleosides studied, making some amount of two-photon ionization of the solvent unavoidable. The excited state lifetimes of Ado, Guo, Cyd, and Thd were determined to be 290, 460, 720, and 540 fs, respectively (uncertainties are +/-40 fs). The decay times are shorter for the purines than for the pyrimidine bases, consistent with their lower propensity for photochemical damage. Following internal conversion, vibrationally highly excited ground state molecules were detected in experiments on Ado and Cyd by hot ground state absorption at ultraviolet wavelengths. The decays are assigned to intermolecular vibrational energy transfer to the solvent. The longest time constant observed for Ado is approximately 2 ps, and we propose that solute-solvent H-bonds are responsible for this fast rate of vibrational cooling. The results show for the first time that excited singlet state dynamics of the DNA bases can be directly studied at room temperature. Like sunscreens that function by light absorption, the bases rapidly convert dangerous electronic energy into heat, and this property is likely to have played a critical role in life's early evolution on earth.  相似文献   

14.
Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu(II)(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(II) to copper(I) and the formation of MeOH·Cl charge-transfer complexes. The depletion of ground-state [Cu(II)(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu(II)(MeOH)(5)Cl](+) and [Cu(II)(MeOH)(4)Cl(2)] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative.  相似文献   

15.
Time- and frequency-domain three-wave mixing spectroscopy (IR+visible sum frequency generation) is developed as the lowest-order nonlinear technique that is both surface selective and capable of measuring spectral evolution of vibrational coherences. Using 70 fs infrared and 40 fs visible pulses, we observe ultrafast spectral dynamics of the OD stretch of D2O at the CaF2 surface. Spectral shifts indicative of the hydrogen-bond network rearrangement occur on the 100 fs time scale, within the observation time window determined by the vibrational dephasing. By tuning the IR pulse wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different subensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding structures) shows monotonic decay and nu(OD) frequency shift to the red on a 100 fs time scale, which is better described by a Gaussian than an exponential frequency correlation function. In contrast, the red-side excitation (stronger H-bonding structures) results in a blue spectral shift and a recursion in the signal at 125+/-10 fs, indicating the presence of an underdamped intermolecular mode of interfacial water.  相似文献   

16.
A cyclometalated platinum(II) 4,6-diphenyl-2,2'-bipyridyl pentynyl complex (1) has been synthesized and structurally characterized. Its photophysical and third-order nonlinear optical properties have been systematically investigated. This complex exhibits a metal-to-ligand charge-transfer (1MLCT) absorption band between 400 and 500 nm and a 3MLCT emission band at approximately 591 nm at room temperature with a lifetime of approximately 100 ns. At 77 K, the emission band blue shifts. Both UV-vis absorption and emission spectra show solvent dependence. Low-polarity solvents cause a bathochromic shift of the absorption and emission bands. This complex also exhibits a broad and strong transient absorption from the near-UV to the near-IR spectral region, with a triplet absorption coefficient of 4933 L mol(-1) cm(-1) at 585 nm and a quantum yield of 0.51 for the formation of the triplet excited state. Nonlinear transmission and Z-scan techniques were employed to characterize the third-order nonlinearities of this complex. A strong and broadband reverse saturable absorption was observed for nanosecond and picosecond laser pulses due to the reduced ground-state absorption in the visible spectral range. It also exhibits a self-defocusing effect at 532 nm for nanosecond laser pulses. The excited-state absorption cross section deduced from the open-aperture Z-scan increases at longer wavelengths, with an exceptionally large ratio of excited-state absorption to ground-state absorption of 160 at 570 nm for picosecond laser pulses.  相似文献   

17.
A hybrid of a time-of-flight mass spectrometer and a time-of-flight "magnetic-bottle type" photoelectron (PE) spectrometer is used for fs pump-probe investigations of the excited state dynamics of thiophene. A resonant two-photon ionization spectrum of the onset of the excited states has been recorded with a tunable UV laser of 190 fs pulse width. With the pump laser set to the first intense transition we find by UV probe ionization first a small time shift of the maxima in the PE spectrum and then a fast decay to a low constant intensity level. The fitted time constants are 80+/-10 fs, and 25+/-10 fs, respectively. Theoretical calculations show that upon geometry relaxation the electronic state order changes and conical intersections between excited states exist. We use the vertical state order S1, S2, S3 to define the terms S1, S2, and S3 for the characterization of the electron configuration of these states. On the basis of our theoretical result we discuss the electronic state order in the UV spectra and identify in the photoelectron spectrum the origin of the first cation excited state D1. The fast excited state dynamics agrees best with a vibrational dynamics in the photo-excited S1 (80+/-10 fs) and an ultrafast decay via a conical intersection, presumably a ring opening to the S3 state (25+/-10 fs). The subsequently observed weak constant signal is taken as an indication, that in the gas phase the ring-closure to S0 is slower than 50 ps. An ultrafast equilibrium between S1 and S2 before ring opening is not supported by our data.  相似文献   

18.
Ultrafast pump-broadband probe spectroscopy was used to study the transient photoproducts following 200-nm photodetachment of I(-)(aq). Resonant detachment at 200 nm in the second charge-transfer-to-solvent (CTTS) band of I(-)(aq) is expected to produce an electron and iodine in its spin-orbit excited state, I*((2)P(1/2)). The transients in solution following photodetachment were probed from 200 to 620 nm. Along with strong absorption in the visible region due to solvated electrons and a strong bleach of the I(-)(aq) ground-state absorption, a weaker transient absorption near 260 nm was observed that is consistent with a previously assigned ground-state I((2)P(3/2)) charge-transfer band. However, no evidence was found for an equivalent I*(aq) charge-transfer absorption, and I((2)P(3/2)) was produced within the instrument response. This suggests either that I* is electronically relaxed in less than 300 fs or that excitation in the second CTTS band does not in fact lead to I*. The consequences for previous experimental work where I*(aq) production has been postulated, as well as for halogen electron ejection mechanisms, are discussed. In addition, the broad spectral coverage of this study reveals in the bleach recovery the rapid cooling of the solvent surrounding the re-formed iodide after geminate recombination of the iodine with the solvated electron.  相似文献   

19.
The photophysics of singlet excited 5-fluorocytosine (5FC) was studied in steady-state and time-resolved experiments and theoretically by quantum chemical calculations. Femtosecond transient absorption measurements show that replacement of the C5 hydrogen of cytosine by fluorine increases the excited-state lifetime by 2 orders of magnitude from 720 fs to 73 +/- 4 ps. Experimental evidence indicates that emission in both compounds originates from a single tautomeric form. The lifetime of 5FC is the same within experimental uncertainty in the solvents ethanol and dimethyl sulfoxide. The insensitivity of the S(1) lifetime to the protic nature of the solvent suggests that proton transfer is not the principal quenching mechanism for the excited state. Excited-state calculations were carried out for the amino-keto tautomer of 5FC, the dominant species in polar environments, in order to understand its longer excited-state lifetime. CASSCF and CAS-PT2 calculations of the excited states show that the minimum energy path connecting the minimum of the (1)pi,pi state with the conical intersection responsible for internal conversion has essentially the same energetics for cytosine and 5FC, suggesting that both bases decay nonradiatively by the same mechanism. The dramatic difference in lifetimes may be due to subtle changes along the decay coordinate. A possible reason may be differences in the intramolecular vibrational redistribution rate from the Franck-Condon active, in-plane modes to the out-of-plane modes that must be activated to reach the conical intersection region.  相似文献   

20.
Ultrafast electronic-vibrational relaxation upon excitation of the singlet charge-transfer b (1)A' state of [Re(L)(CO) 3(bpy)] ( n ) (L = Cl, Br, I, n = 0; L = 4-Et-pyridine, n = 1+) in acetonitrile was investigated using the femtosecond fluorescence up-conversion technique with polychromatic detection. In addition, energies, characters, and molecular structures of the emitting states were calculated by TD-DFT. The luminescence is characterized by a broad fluorescence band at very short times, and evolves to the steady-state phosphorescence spectrum from the a (3)A" state at longer times. The analysis of the data allows us to identify three spectral components. The first two are characterized by decay times tau 1 = 85-150 fs and tau 2 = 340-1200 fs, depending on L, and are identified as fluorescence from the initially excited singlet state and phosphorescence from a higher triplet state (b (3)A"), respectively. The third component corresponds to the long-lived phosphorescence from the lowest a (3)A" state. In addition, it is found that the fluorescence decay time (tau 1) corresponds to the intersystem crossing (ISC) time to the two emissive triplet states. tau 2 corresponds to internal conversion among triplet states. DFT results show that ISC involves electron exchange in orthogonal, largely Re-localized, molecular orbitals, whereby the total electron momentum is conserved. Surprisingly, the measured ISC rates scale inversely with the spin-orbit coupling constant of the ligand L, but we find a clear correlation between the ISC times and the vibrational periods of the Re-L mode, suggesting that the latter may mediate the ISC in a strongly nonadiabatic regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号