首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immobilization of the anticoagulative or antithrombogenic biomolecule has been considered as one of the important methods to improve the blood compatibility of artificial biomaterials. In this study, a novel immobilization reaction scheme was utilized to incorporate O-butyrylchitosan (OBCS) onto the activated glass surface with an aim to develop an anticoagulative substrate. Activation of the glass surface was carried out by silanization and then OBCS was grafted to the silanized surface via a radiation grafting technique. The OBCS-grafted glass surfaces were characterized by electron spectroscopy for chemical analysis (ESCA) and atomic force microscopy (AFM). The blood compatibility of the OBCS-grafted glass was evaluated by platelet rich plasma (PRP) contacting experiments and protein adsorption experiments in vitro. These results have demonstrated that the surface with immobilized OBCS shows much less platelet adhesive and fibrinogen adsorption compared to the control surface. Therefore, the novel reaction scheme proposed here is very promising for future development of an anticoagulative glass substrate.  相似文献   

2.
Based on an in vitro test for an improvement of the blood compatibility of silicone rubber (SR) films by grafting O-butyrylchitosan (OBCS), OBCS was covalently immobilized onto SR film surface using the photosensitive hetero-bifunctional crosslinking reagent, 4-azidobenzoic acid, which was previously bonded to OBCS by reaction between an acid group of the crosslinking reagent and a free amino group of OBCS. Surface properties of SR film were investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), electron spectroscopy for chemical analysis (ESCA) and the water contact angle measurements. The blood compatibility of SR film was evaluated by platelet rich plasma (PRP) contacting experiments and the results were observed by scanning electron microscopy (SEM). The state of platelet adhesion was described. The suitable modifications could be carried out to tailor SR films biomaterial to meet the specific needs of different biomedical applications. These results suggest that the blood compatible of SR films/OBCS films show their suitability as potential biomaterials.  相似文献   

3.
In this paper, the mechanism of thrombus formation on the surface of polymeric materials and the various approaches of modifying biomaterial surfaces to improve their hemocompatibility are reviewed. Moreover, the blood compatibility of the cellulose membrane grafted with O-butyrylchitosan (OBCS) by using a radiation grafting technique was studied. Surface analysis of grafted cellulose membrane was verified by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA), which confirmed that OBCS was successfully grafted onto the cellulose membrane surfaces. Blood compatibility of the grafted cellulose membranes was evaluated by platelet rich plasma (PRP) contacting experiments and protein adsorption experiments using blank cellulose membranes as the control. The blood compatibility of OBCS grafted cellulose membranes is better than that of blank cellulose membranes. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving in blood-contacting applications in medical use.  相似文献   

4.
<正>Polypyrrole(PPy) shows a favorable application in the electromagnetic interference(EMI) shielding due to its good electrical conductivity and outstanding air stability.Conducting PPy films with high conductivity and good adhesion were successfully polymerized on the surface of insulating epoxy resin substrates using chemical polymerization.The factors affecting the properties of PPy films,such as the surface morphology,adhesion between PPy film and substrate,electrical conductivity,EMI shielding effectiveness(SE),were investigated.The adhesion was improved significantly through a three-step surface pretreatment of epoxy resin substrates including removing impurities,roughening,and surface modification with silane coupling agent.An enhancement in the conductivity of PPy films of about one order of magnitude was achieved by adding dopant in FeCl_3 solution.The higher the conductivity,the better the shielding effectiveness.Taking sodium p-toluenesulfonate doped PPy film as example,EMI SE was in the practically useful range of about 30 dB over a wide frequency range from 30 MHz to 1500 MHz.The PPy film samples were characterized by scanning electron microscopy (SEM),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS) and the flange coaxial transmission device.The fourpoint probe method was used to measure conductivity of PPy films.  相似文献   

5.
In this study polypyrrole (PPy) nanoparticles were deposited as a thin film on the modified surface of polyethyleneterephthalate (PET) by in situ chemical polymerization in the presence of sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (DBSNa) and mixture of them as the surfactant. The surface of PET was modified by KOH before deposition and was investigated for conductivity and adhesion of PPy nanoparticles to PET. Resulting conductive flexible films were characterized by UV–Vis spectroscopy, fieldemission scanning electron microscopy, contact angle measurements and four-point-probe technique for conductivity. Direct morphological observation (FESEM) and electrical measurements indicated that the morphology, conductivity and the nature of deposited PPy films depend on surfactant, surface modification of PET and monomer concentration. In optimized process condition, uniform conductive films of PPy were obtained with good adhesion to PET.  相似文献   

6.
Poly(pyrrole-co-pyrrole propylic acid) (PPy/PPa) composite films were prepared for the first time by electrochemical copolymerization in mixed pyrrole propylic acid (Pa) and pyrrole solutions. The electrochemical growth process was investigated by in situ electrochemical surface plasmon resonance (ESPR). Atomic force microscopy and Fourier transform infrared spectroscopy were applied to characterize the prepared films. Using bovine serum albumin as a model protein, the adsorption kinetics of the protein on PPy/PPa films were studied in situ by SPR. The composition of Pa, the isoelectric point of proteins, the pH of buffers, and surfactant treatment showed dramatic effects on the protein adsorption on the PPy/PPa film. Experimental results indicated that the electrostatic interaction between the PPy/PPa film and proteins plays a critical role in protein adsorption and provided a novel strategy to efficiently immobilize proteins and to reduce nonspecific bindings of proteins in an immunobiosensor.  相似文献   

7.
Conductive polypyrrole (PPy) films and PPy films containing Ge microparticles were synthesized by anodic oxidation of pyrrole in acidic nitrate solutions using a bare passivated titanium electrode. Well-adhering black PPy films were obtained both under galvanostatic and potentiodynamic polarization. After the formation of the PPy film, during the first anodic cycle, an increase of the anodic deposition current with the number of cycles was observed, revealing the increase of conductivity of the growing film. The variations of the electrode surface area were estimated by impedance spectroscopy measurements. The kinetics of the PPy film formation is controlled by diffusion of the Py monomer in the solution. The diffusion coefficient, estimated by two different methods, was ca. 2×10–6 cm2 s–1. The reduction rate of oxygen and protons at the Ti/PPy/Ge electrodes depends on how the Ge microparticles are incorporated in the PPy film. Optimum conditions for this incorporation are realized with thin PPy films and high Ge loading. Thermogravimetric analysis shows that the PPy film containing Ge microparticles is more thermally stable than the blank PPy film. Electronic Publication  相似文献   

8.
Electrical and morphological properties of polypyrrole (PPy) films were studied during and after their electrochemical growth under various experimental conditions on a nanometer scale using a current-sensing atomic force microscope (CS-AFM). Of acetonitrile (ACN) solutions containing various amounts of water, one that contained 1.0% water produced the best quality films in their electrical and morphological properties in terms of homogeneities. The degree of doping, as well as time evolution of the film structure and its conductivity, of the PPy films was investigated during their growth in water and ACN with 1.0% water by obtaining the current images at a few designated growing stages, and the results were compared. Well-doped, conductive films were obtained from the very early stage during the electrodeposition of PPy in the ACN solution, while the films were poorly doped in water. As the film deposition progressed further in both aqueous and nonaqueous media, the doped areas spread over the whole surface leading to a more homogeneously conducting film. The current-voltage traces were obtained at each growing stage, which showed that the conductivity increases in both media as the PPy grows; the conductivity of the film grown in ACN is much higher than that of the film grown in water at all growing stages. The electrical properties of the PPy film deteriorated gradually upon exposure to air.  相似文献   

9.
Surface modification of segmented poly(ether urethane) (SPEU) by graft copolymerization with N,N′-dimethyl-N-methacryloyloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a zwitterionic sulfobetaine structure, was conducted. A simple two-step procedure for grafting of DMMSA onto the surface of SPEU film was used. The surface was first treated with ozone to introduce active hydroperoxide groups. The active surface was then exposed to the DMMSA solution in the sealed tube. Grafted SPEU film was characterized by ATR–FTIR, XPS and contact angle measurement. ATR–FTIR and XPS investigations confirmed the graft copolymerization. The monomer concentration, copolymerization temperature and time were varied to maximize the efficiency of DMMSA grafting. The equilibrium water content (EWC) and contact angle measurements showed that the hydrophilicity of the film had been greatly improved. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP), deposits in blood control and protein adsorption in bovine fibrinogen using SPEU film as the control. No platelet adhesion and no thrombus were observed for the grafted films incubated in PRP for 300 min and in blood for 120 min, respectively. The protein adsorption was reduced on the grafted films after incubation in bovine fibrinogen for 120 min. These results proved that improved blood compatibility was obtained by grafting this new zwitterionic sulfobetaine structure monomer onto SPEU film.  相似文献   

10.
Poly(ethylene terephthalate) (PET) films were treated by argon plasma following by graft copolymerization with acrylic acid (AAc). The obtained PET-surface grafted PAA (PET-g-PAA) was coupled with chitosan (CS) and o-carboxymethylchitosan (OCMCS) molecules, respectively. Their surface physicochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle and streaming potential measurements. The PET-g-PAA surface containing carboxylic acid, CS immobilized PET surface containing amino and OCMCS immobilized PET surface containing both carboxylic acid and amino groups, make the PET surface exhibited a hydrophilic character. The blood compatibility was evaluated by platelet contacting experiments and protein adsorption experiments in vitro. The results demonstrate that the PET surface coupling OCMCS shows much less platelet adhesive and fibrinogen adsorption compared to the other surface modified PET films. The anticoagulation of PET-OCMCS is ascribed to the suitable balance of hydrophobicity/hydrophilicity, surface zeta potential and the low adsorption of protein.  相似文献   

11.
In order to improve blood compatibility of polyethylene (PE) film, the Pluronics F127 additives in the PE film were then crosslinked to be stably entrapped in the PE matrix. The crosslinking was done by free radicals produced from the decomposition of dicumyl peroxide (DCP) in the film through heating (120 °C). Surface properties of the Pluronics F127 additive-containing PE films were investigated by Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA) and water contact angle (WCA) measurements. The blood compatibility of the Pluronics F127 additive-containing films was evaluated by platelet-rich plasma and blood-cell adhesion tests, respectively. And the results were observed by scanning electron microscopy. The blood compatibility of the prepared Pluronics F127 additive-containing film is better than that of blank PE film. These results suggest that the blood compatibility of Pluronics F127 additive-containing films make them suitable biomaterials for some applications.  相似文献   

12.
Bulk modification of polypyrrole (PPY) with poly(vinyl alcohol) (PVA) was carried out by the electropolymerization of pyrrole in the presence of PVA in the reaction solution, with tetraethylammonium perchlorate (TEAP) as the electrolyte. The surface morphology of the as-synthesized PPY-TEAP-PVA film was investigated using scanning electron microscopy, and the film was further characterized using X-ray photoelectron spectroscopy, electrical conductivity, the water contact angle, and BET surface area measurements. The PPY-TEAP-PVA composite is electrically conductive, hydrophilic, and microporous with a high surface area. Its potential as a biomaterial was investigated with respect to its blood compatibility and function as a substrate for biosensor fabrication and cell culture. The presence of PVA in the film attenuates blood protein adsorption, and the porous nature of the PPY-TEAP-PVA film results in a 10-fold increase in the amount of glucose oxidase covalently immobilized on the film over that on a nonporous PPY film. PC12 cell attachment and growth on the PPY-TEAP-PVA film was also shown to be enhanced compared with that on tissue culture polystyrene. The attached cells proliferated and formed a monolayer on the film surface after 48 h of seeding.  相似文献   

13.
In the present work, electropolymerized polypyrrole (PPy) films were obtained on the surface of the surgical ISO 5832-1 stainless steel. The films were obtained from solutions containing 0.1M and 0.5M of the monomer by cyclic voltammetry deposition. The correlation between the surface chemistry of the as-deposited films and the corrosion behavior of the coated substrate is explored. X-ray photoelectron spectroscopy was used to study the chemical state of the main elements in the PPy films. Electrochemical impedance spectroscopy and potentiodynamic polarization tests were employed to evaluate the corrosion resistance of the PPy-coated samples. The tests were conducted in phosphate-buffered saline solution at 37°C. The measured corrosion current densities were dependent on the doping level of the PPy film and decreased with the reduction of the doping level of the PPy layer.  相似文献   

14.
A surface modification technique was developed in which heparin was covalently immobilized onto electrically conductive polypyrrole (PPY) film through poly(ethylene glycol) methacrylate (PEGMA) graft copolymerization and subsequent cyanuric chloride activation. In vitro plasma protein adsorption and thrombus formation experiments were carried out on the various films. The PEGMA-graft-copolymerized PPY surfaces with immobilized heparin have good bioactivity indicated by low level of protein adsorption, high ratio of albumin to fibrinogen adsorption, and low thrombus formation, making them potentially good candidates for biomedical applications. Since the PPY film retained significant electrical conductivity after surface modification, the effect of electrical stimulation on protein adsorption and thrombus formation was also evaluated. The covalently immobilized heparin on the PPY film was able to retain its bioactivity after 4 days of immersion in PBS. The film after long-term immersion in PBS also retained sufficient electrical conductivity for electrical stimulation still to be effective for reducing protein adsorption.  相似文献   

15.
Platelet adhesion and protein adsorption on the silicone rubber film grafted with N,N'-dimethyl-N-methacryloyloxyethyl-N-(2-carboxyethyl) ammonium (DMMCA) was studied. The grafting was carried out by means of ozone-induced method and was confirmed by ATR-FTIR and XPS investigations. The grafted films possessed relatively hydrophilic surface revealed by contact angle measurement. The blood compatibility of the grafted film was evaluated in vitro by platelet adhesion in platelet-rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG) using silicone film as the reference. No substantial platelet adhesion was observed for the grafted films incubated in PRP for 60 and 180 min. The protein absorption was also significantly reduced after incubated in bovine fibrinogen for 60 min. Both the results indicated that the blood compatibility of silicone rubber was greatly improved by ozone-induced grafting of carboxybetaine zwitterionic polymer onto its surface.  相似文献   

16.
Ultrathin tin oxide films were deposited on SiO2 nanoparticles using atomic layer deposition (ALD) techniques with SnCl4 and H2O2 as the reactants. These SnO(x) films were then exposed to O2 and CO gas pressure at 300 degrees C to measure and understand their ability to serve as CO gas sensors. In situ transmission Fourier transform infrared (FTIR) spectroscopy was used to monitor both the charge conduction in the SnO(x) films and the gas-phase species. The background infrared absorbance measured the electrical conductivity of the SnO(x) films based on Drude-Zener theory. O2 pressure was observed to decrease the SnO(x) film conductivity. Addition of CO pressure then increased the SnO(x) film conductivity. Static experiments also monitored the buildup of gas-phase CO2 reaction products as the CO reacted with oxygen species. These results were consistent with both ionosorption and oxygen-vacancy models for chemiresistant semiconductor gas sensors. Additional experiments demonstrated that O2 pressure was not necessary for the SnO(x) films to detect CO pressure. The background infrared absorbance increased with CO pressure in the absence of O2 pressure. These results indicate that CO can produce oxygen vacancies on the SnO(x) surface that ionize and release electrons that increase the SnO(x) film conductivity, as suggested by the oxygen-vacancy model. The time scale of the response of the SnO(x) films to O2 and CO pressure was also measured by using transient experiments. The ultrathin SnO(x) ALD films with a thickness of approximately 10 A were able to respond to O2 within approximately 100 s and to CO within approximately 10 s. These in situ transmission FTIR spectroscopy help confirm the mechanisms for chemiresistant semiconductor gas sensors.  相似文献   

17.
Chemical synthesis of polypyrrole (PPy) was carried out in the presence of FeCl3 aqueous solution. The grown PPy is fixed on the sulfonated surface of polyethylene (SPE) films, where the sulfonic groups act as counteranions to balance the positive charge of PPy, giving the composite material of PPy–SPE. For reasons of comparison, two types of polyethylene (PE) have been used, low and high densities with different degrees of sulfonation, SD (g/m2), defined as the ratio of weight increase to the area of the two surfaces of the sample. A series of reaction times was used to evaluate the variation of the electrical conductivity, σ (S/cm), of polypyrrole. It was found that σ increases as reaction time increases. To characterize the samples, Fourier transform infrared (FTIR) spectroscopy and conductivity measurements were performed.  相似文献   

18.
Surface modification is an effective way to improve the hemocompatibility and remain bulk properties of biomaterials. Recently, polymer tailed with zwitterions was found having good blood compatibility. In this study, the grafting copolymerization of sulfobetaine onto polyurethane surface was obtained through two steps. In the first step, polyurethane film coupled with vinyl groups was obtained through the reaction between the carboxyl group of acrylic acid (AA) and the NH-urethane group of polyurethane by dicyclohexylcarbodiimide (DCC). In the second step, sulfobetaine was grafted copolymerization on the surface using AIBN as an initiator. The reaction process was monitored with ATR-IR spectra and X-ray photoelectron spectroscopy (XPS) spectra. The wettability of films was investigated by water contact angle measurement. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG). Low platelet adhesion was observed on the grafted films incubated in PRP for 1 and 3 h, respectively. The protein absorption was reduced on the grafted films after incubated in bovine fibrinogen for 2 h. All of these results revealed that the improved blood compatibility was obtained by grafting copolymerization with zwitterionic monomer of sulfobetaine onto polyurethane film. In addition, introducing vinyl groups onto surface through DCC and AA is a novel method to functionalize polyurethane for further modification.  相似文献   

19.
The preparation of PPy/PPTA conductive composite films by electrochemical method is presented.The first step is to cast a thin layer of poly (p-phenylene-terephthalamide) (PPTA) on a slice of Pt working electrode. The second step is to electrochemically polymerize pyrrole on the PPTA/Pt working electrode. Both of the electrical conductivity and the mechanical properties of the PPy/PPTA composite film are better than those of the pure PPy film, and the film has excellent flexibility at low temperature, even in liquid nitrogen.The SEM picture of the cross-section of PPy,/PPTA composite film showed that the two components were well mixed.Cyclic voltammograms of PPy,/PPTA film in aqueous solution showed that the conductive films could be reduced and reoxidized.  相似文献   

20.
《Electroanalysis》2003,15(13):1134-1138
In this study, the conductivities of various polypyrrole (PPy) films were evaluated via the corresponding surface‐enhanced Raman scattering (SERS) spectrum and X‐ray photoelectron spectroscopy (XPS). The results indicate that the peak position of C?C bonds stretching of PPy obtained from the SERS spectrum shows more exactly both qualitatively and quantitatively representing the conductivity of PPy than the N+/N ratio or the doping level obtained from the XPS analysis does. Namely the peak position of C?C bonds stretching of PPy monotone decreases to a lower frequency side with the increase of the conductivity of PPy. Furthermore, a satisfactory correlated equation between them was obtained. On the contrary, neither the N+/N ratio nor the doping level can be qualitatively reflective on the corresponding conductivity of PPy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号