首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly synthesized oligothiophene surfactant self-assembles into unilamellar vesicles in aqueous solution and exhibits semiconductive behavior as a cast film.  相似文献   

2.
Thermal analysis and infra-red spectroscopy have been used to study the interactions between poly (N-vinylpyrrolidone) and low-molar-mass, hydrogen-bonding-active aromatics. A remarkably strong interaction is observed between the polymer and 3,5-dihydroxybenzoic acid, which is consistent with the crosslinking of the polymer by acid dimers.  相似文献   

3.
In the absorption spectra of isocyclically substituted metal porphyrins, the inactive second electron transition produces a significant effect on the vibrational structure of the fluorescence spectra due to vibronic borrowing of intensitites. These vibronic interactions involving the second electron level are universal for the spectra of metal porphyrins. Institute of Molecular and Atomic Physics, Belarus Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 2, pp. 366–369, March–April, 1995. Translated by L. Smolina  相似文献   

4.
5.
A model is proposed for the interpretation of magnetic properties of polynuclear mixed-valence complexes containing a pair of delocalised electrons. It is shown that in many cases the delocalisation leads to a spin-singlet ground state of clusters. The combined delocalisation + vibronic mechanism of stabilisation of the spin-singlet state is proposed for clusters containing triangles of metal atoms.  相似文献   

6.
We derive exact properties of the inhomogeneous electron gas in the asymptotic classically forbidden region at a metal–vacuum interface within the framework of local effective potential energy theory. We derive a new expression for the asymptotic structure of the Kohn–Sham density functional theory (KS‐DFT) exchange‐correlation potential energy vxc(r) in terms of the irreducible electron self‐energy. We also derive the exact asymptotic structure of the orbitals, density, the Dirac density matrix, the kinetic energy density, and KS exchange energy density. We further obtain the exact expression for the Fermi hole and demonstrate its structure in this asymptotic limit. The exchange‐correlation potential energy is derived to be vxc(z → ∞) = ?αKS,xc/z, and its exchange and correlation components to be vx(z → ∞) = ?αKS,x/z and vc(z → ∞) = ?αKS,c/z, respectively. The analytical expressions for the coefficients αKS,xc and αKS,x show them to be dependent on the bulk‐metal Wigner–Seitz radius and the barrier height at the surface. The coefficient αKS,c = 1/4 is determined in the plasmon‐pole approximation and is independent of these metal parameters. Thus, the asymptotic structure of vxc(z) in the vacuum region is image‐potential‐like but not the commonly accepted one of ?1/4z. Furthermore, this structure depends on the properties of the metal. Additionally, an analysis of these results via quantal density functional theory (Q‐DFT) shows that both the Pauli Wx(z → ∞) and lowest‐order correlation‐kinetic W(z → ∞) components of the exchange potential energy vx(z → ∞), and the Coulomb Wc(z → ∞) and higher‐order correlation‐kinetic components of the correlation potential energy vc(z → ∞), all contribute terms of O(1/z) to the structure. Hence correlations attributable to the Pauli exclusion principle, Coulomb repulsion, and correlation‐kinetic effects all contribute to the asymptotic structure of the effective potential energy at a metal surface. The relevance of the results derived to the theory of image states and to KS‐DFT is also discussed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

7.
A slab approach in the framework of ab initio calculations was applied to study surface electronic states in In2O3 crystal. Density functional theory (DFT) calculations were carried out employing the WIEN 2k code and using the full potential method with Augmented Plane Waves + local orbitals (APW+lo) formalism. Total and partial DOS (Density of States) were calculated for In and O atoms in two upper (110) surface layers. Comparison of total and partial DOS allowed determining a contribution of electronic states of different In and O surface atoms into formation of surface electronic spectra and corresponding chemical bonds. A dominant ionic character of chemical bonds in In2O3 is found. Calculations were performed for three slab models with different geometry parameters. It was shown that an optimal ratio between the whole vertical size of a supercell and the vertical size of atomic cluster has to be chosen. The size of vacuum region in the slab model influences significantly on the reliability of calculated characteristics of the surface electronic structure. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
In the past decade inverse photoemission has proved to be a technique well suited to study unoccupied bulk and surface electronic states of solids. This paper presents a brief review focusing on the spectroscopy of surface states on metal surfaces and how these states are influenced by simple adsorbates, surface reconstructions or the presence of a ferromagnetic substrate.

The experimental observations are discussed within the framework of a nearly free electron model of surface states.  相似文献   


9.
The superposition of chiral states of chiral molecules, as delocalized quantum states of a many-particle system, can be used for the experimental investigations of decoherence theory. In this regard, a great challenge is the precise quantification of the robustness of these superpositions against environmental effects. The methods so far proposed need the detailed specification of the internal states of the molecule, usually requiring heavy numerical calculations. Here, by using the linearized quantum Boltzmann equation and by borrowing ideas employed for analyzing other quantum systems, we present a general and simple approach, of wide applicability, which can be used to compute the dominant contribution to the decoherence rate for the superpositions of chiral states of chiral molecules, due to environmental scattering.  相似文献   

10.
We have studied the screening properties of quasi-one-dimensional electronic states which may arise in the troughs of reconstructed (110) surfaces of some fcc metals (Ni and Cu) as chain states localized in the direction perpendicular to the troughs. Motivated by the analysis of the experimental data on the H/Ni(110) system, we discuss the indirect interaction between two H adatoms which is mediated by such states. Using first a linear model of screening of impurity potentials we show that such interaction should exhibit long range oscillations which scale as d−1 for large distances d between the adatoms. By fitting this result to the experimental data available for the H/Ni(110) system we found that a relatively large shift ηa was required to describe these oscillations. This has lead us to use a nonlinear model for the screening of adatoms, based on the Anderson Hamiltonian of impurity screening. This approach yields an indirect interaction between two adatoms which is regular for all d and behaves asymptotically as ˜ cos[2kFd − 2ηaF)/d where kF is the Fermi wavevector at the metal surface. The physical significance of the parameters of the model derived thereof can be interpreted in the context of incomplete screening of H adatoms by quasi-one-dimensional electronic chain states existing on the substrate surface.  相似文献   

11.
Photophysical kinetic results have played an important role in assessing excited state relaxation pathways in transition metal complexes. The applicability of a kinetic analysis is critically dependent on the quality of the individual decay rates, the temperature range examined, and the model used to extract the activation parameters. The extensive literature describing the temperature dependence of excited state depopulation in d3 and d6 complexes permits an evaluation of both the power and limitations of kinetic arguments in assessing the mechanism of excited state relaxation.  相似文献   

12.
This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5'-(methyloxycarbonyl)pentyl-1'-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films.  相似文献   

13.
《Chemical physics letters》1985,121(3):239-244
We have applied electron energy loss spectroscopy to the study of metal—polymer bonding. Changes in polymer surface vibrational structure after deposition of Pd or Cr onto a thin polyimide film at room temperature are analyzed. Pd does not react with polyimide, but Cr reacts readily near carbonyl sites as evidenced by the rapid shift and attenuation of the CO vibrational band. The condensation of the metal overlayer is also determined by the onset of broadening of the elastic peak providing insight into the structural homogeneity of these metal films.  相似文献   

14.
15.
Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.  相似文献   

16.
17.
陈婷  万立骏 《中国科学B辑》2009,39(10):1102-1114
表面手性现象是物理化学科学研究的重要内容之一,研究表面手性现象,将有助于对分子吸附,分子间相互作用,多相手性催化,手性分离与拆分等科学和实际应用问题的深入理解.在表面手性现象和手性结构的研究中,扫描隧道显微技术(STM)发挥着重要作用,成为研究表面手性现象的重要手段.该综述文章以本课题组近年已发表的研究工作为主,重点介绍利用STM研究固体表面分子吸附组装体系中关于手性问题的部分结果,包括固有手性分子在固体表面的吸附,非手性分子组装形成手性结构,以及表面手性结构的转化和调控.还结合实验结果分析探讨了表面手性的结构形成、放大和传递等,展望了该研究领域的发展趋势.  相似文献   

18.
Monte Carlo simulations are used to model the self-organizing behavior of the biomineralizing peptide KSL (KKVVFKVKFK) in the presence of phosphate. Originally identified as an antimicrobial peptide, KSL also directs the formation of biosilica through a hypothetical supramolecular template that requires phosphate for assembly. Specificity of each residue and the interactions between the peptide and phosphate are considered in a coarse-grained model. Both local and global physical quantities are calculated as the constituents execute their stochastic motion in the presence and absence of phosphate. Ordered peptide aggregates develop after simulations reach thermodynamic equilibrium, wherein phosphates form bridging ligands with lysines and are found interdigitated between peptide molecules. Results demonstrate that interactions between the lysines and phosphate drive self-organization into lower energy conformations of interconnected peptide scaffolds that resemble the supramolecular structures of polypeptide- and polyamine-mediated silica condensation systems. Furthermore, the specific phosphate-peptide organization appears to mimic the zwitterionic structure of native silaffins (scaffold proteins of diatom shells), suggesting a similar template organization for silica deposition between the in vitro KSL and silaffin systems.  相似文献   

19.
Metal nanoparticles can be used as building blocks for the formation of nanostructured materials. For the design of materials with specific (optical) properties, several approaches can be followed, even when starting from the very same basic units. In this article, a survey is provided of the optical properties of noble metal nanoparticles, specifically gold, silver, and their combinations, prepared in solution through colloid chemical methods. The optical properties are shown to be mainly influenced by the surface plasmon resonance of conduction electrons, the frequency of which is not only determined by the nature of the metal but also by a number of other parameters, such as particle size and shape, the presence of a capping shell on the particle surface, or the dielectric properties of the surrounding medium. Recent results showing how these various parameters affect the optical properties are reviewed. The results highlight the high degree of control that can now be achieved through colloid chemical synthesis.  相似文献   

20.
Femtosecond transient absorption spectroscopy has been used to investigate the electron-electron scattering dynamics in sulfate-covered gold nanoparticles of 2.5 and 9.2 nm in diameter. We observe an unexpected retardation of the absolute internal thermalization time compared to bulk gold, which is attributed to a negative feedback by the vibrationally excited sulfate molecules. These hot adsorbates, acting as a transient energy reservoir, result from the back and forth inelastic scattering of metal nonequilibrium electrons into the pi orbital of the sulfate. The vibrationally excited adsorbates temporarily govern the dynamical behavior of nonequilibrium electrons in the metal by re-emitting hot electrons. In other terms, metal electrons reabsorb the energy deposited in the hot sulfates by a mechanism involving the charge resonance between the sulfate molecules and the gold NPs. The higher surface-to-volume ratio of sulfate-covered gold nanoparticles of 2.5 nm leads to a stronger inhibition of the internal thermalization. Interestingly, we also note an analogy between the mechanism described here for the slow-down of electron-electron scattering in metal nanoparticles by the hot adsorbates and the hot phonon-induced retardation of hot charge carriers cooling in semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号