首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The colloid stability of supramolecular assemblies composed of the synthetic cationic lipid dioctadecyldimethylammonium bromide (DODAB) on carboxymethyl cellulose (CMC) supported on polystyrene amidine (PSA) microspheres was evaluated via turbidimetry kinetics, dynamic light scattering for particle sizing, zeta-potential analysis, and determination of DODAB adsorption on CMC-covered particles. At 0.1 g L(-1) CMC and 2 x 10(11) PSA particles/mL, CMC did not induce significant particle flocculation, and a vast majority of CMC-covered single particles were present in the dispersion so that this was the condition chosen for determining DODAB concentration (C) effects on particle size and zeta potentials. At 0.35 mM DODAB, charge neutralization, maximal size, and visible precipitation indicated extensive flocculation and minimal colloid stability for the DODAB/CMC/PSA assembly. At 0.1 g L(-1) CMC, isotherms of high affinity for DODAB adsorption on CMC-covered particles presented a plateau at a limiting adsorption of 700 x 10(17) DODAB molecules adsorbed per square meter PSA which was well above bilayer deposition on a smooth particle surface. The polyelectrolyte layer on hydrophobic particles was swelled and fluffy (ca. 11-nm hydrodynamic thickness), and maximal adsorption of DODAB lipid onto this layer produced a compressed composite cationic film with 20 mV of zeta potential and about 10-nm mean thickness. The assembly of cationic lipid/CMC layer/polymeric particle was stable only well above charge neutralization of the polyelectrolyte by the cationic lipid, at relatively large lipid concentrations (at and above 1 mM DODAB) with charge neutralization leading to extensive particle aggregation.  相似文献   

2.
The binding mechanism of poly(diallyldimethylammonium chloride), PDAC, and sodium dodecyl sulfate, SDS, has been comprehensively studied by combining binding isotherms data with microcalorimetry, zeta potential, and conductivity measurements, as well as ab initio quantum mechanical calculations. The obtained results demonstrate that surfactant-polymer interaction is governed by both electrostatic and hydrophobic interactions, and is cooperative in the presence of salt. This binding results in the formation of nanoparticles, which are positively or negatively charged depending on the molar ratio of surfactant to PDAC monomeric units. From microcalorimetry data it was concluded that the exothermic character of the interaction diminishes with the increase in the surfactant/polymer ratio as well as with an increase in electrolyte concentration.  相似文献   

3.
Polyelectrolyte complexes between poly(methacrylic acid, sodium salt) and poly(diallyldimethylammonium chloride) (PDADMAC) or poly[2‐(methacryloyloxyethyl)trimethylammonium chloride] (PMOETAC) form gels, liquid phases, or soluble complexes depending on charge ratio, total polymer loading, polymer molecular weight, and ionic strength. Increasing the ionic strength of the medium led most polyelectrolyte pairs to transition from gel through liquid complexes (complex coacervate) to soluble complexes. These transitions shift to higher ionic strengths for higher molecular weight polymers, as well as for PMOETAC compared to PDADMAC. The complex phases swelled with increasing polymer loading, ultimately merging with the supernatant phase at a critical polymer loading. The isolated liquid complex phases below and above this critical loading were temperature‐sensitive, showing cloud points followed by macroscopic phase separation upon heating. Incorporating 5 mol % lauryl methacrylate into the polyanion led to increased complex yield with PDADMAC, and increased resistance to ionic strength. In contrast, incorporating 30 mol % of oligo(ethylene glycol) methacrylate into the polyanion led to decreased complex yield, and to lower resistance to ionic strength. Two polyelectrolyte systems that produced liquid complexes were used to encapsulate hydrophobic oils, and in one case were used to demonstrate the feasibility of crosslinking the resulting capsule walls. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4129–4143, 2007  相似文献   

4.
Ionically cross-linked polyelectrolyte complexes (PECs) of anionic poly(sodium 4-styrene sulfonate) (PSS) and cationic poly(diallyldimethylammonium chloride) (PDADMAC), xPSS.(1-x)PDADMAC, with molar fractions x ranging from 0.30 to 0.70, were prepared and subsequently dried. The PEC samples were analyzed by differential scanning calorimetry, and the ionic conductivity sigmadc of the samples was measured as a function of temperature by means of impedance spectroscopy. The thermograms display an endothermic peak in the temperature range of 90-143 degrees C, which is attributed to a glass transition of the PEC. The glass transition temperature Tg has a symmetric x dependence with a minimum at x=0.50. The temperature dependence of sigmadcT is not affected by the glass transition. The ionic conductivity of the samples before drying is three orders of magnitude larger than sigmadc after drying; nevertheless, their activation enthalpies are identical. Arrhenius parameters obtained from the systematic study of several PEC compositions are discussed. The ionic conductivity of the PSS-rich samples is significantly higher than sigmadc of PDADMAC-rich samples. This implies a relatively high Na+ mobility as compared to Cl(-) mobility in PEC. In contrast to the symmetric x dependence of Tg, the conductivity of PEC increases and the activation enthalpy decreases with increasing x in the investigated composition range. A strong x dependence of sigmadc is observed for PSS-rich PEC, which is attributed to a significant variation in the mobility of the charge carriers.  相似文献   

5.
Poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) multilayers were treated with 1-5 M NaCl solutions, resulting in continuous changes in the physicochemical properties of the multilayers. Significant mass loss was observed when the salt concentration was higher than 2 M and reached as high as 72% in a 5 M NaCl solution. The disassembly occurred initially in the superficial layers and then developed in the bulk multilayers. For the multilayers with PDADMAC as the outmost layer, the molar ratio of PSS/PDADMAC was increased and the surface chemistry was changed from PDADMAC domination below 2 M NaCl to PSS domination above 3 M NaCl. Owing to the higher concentrations of uncompensated for polyelectrolytes at both lower and higher salt concentrations, the swelling ratio of the multilayers was decreased until reaching 3 M NaCl and then was increased significantly again. The salt-treated PSS/PDADMAC thin films are expected to show different behaviors in terms of the physical adsorption of various functional substances, cell adhesion and proliferation, and chemical reaction activity.  相似文献   

6.
The objective of the work described in this paper was to produce dispersions of small spherical carbon particles, having particle diameters in the region of 0.1 μm. To this end, the dehydrochlorination of poly(vinylidene chloride) (PVDC) latex particles was attempted. The PVDC latex was prepared by a dispersion polymerization route. Both chemical and thermal dehydrochlorination routes were attempted. Chemical dehydrochlorination, using a variety of base/solvent systems, led to nonporous, spherical black particles of the required size, but which contained only 60% carbon; most of the remainder was oxygen, introduced by nucleophilic substitution reactions. Thermal dehydrochlorination, at 700°C under a nitrogen atmosphere, using a fluidized bed arrangement, on the other hand, led to black particles, having 90% carbon and which retained their sphericity, but which were highly porous. Initial chemical dehydrochlorination, prior to thermal treatment, did not seem to reduce the porosity of the final carbons. Dispersions of the carbon particles in a variety of solvents were readily achieved.  相似文献   

7.
The dynamic surface elasticity, dynamic surface tension, and ellipsometric angles of mixed aqueous poly(diallyldimethylammonium chloride)/sodium dodecylsulfate solutions (PDAC/SDS) have been measured as a function of time and surfactant concentration. This system represents a typical example of polyelectrolyte/surfactant complex formation and subsequent aggregation on the nanoscale. The oscillating barrier and oscillating drop methods sometimes led to different results. The surface viscoelasticity of mixed PDAC/SDS solutions are very close to those of mixed solutions of sodium polystyrenesulfonate and dodecyltrimethylammonium bromide but different from the results for some other polyelectrolyte/surfactant mixtures. The abrupt drop in surface elasticity when the surfactant molar concentration approaches the concentration of charged polyelectrolyte monomers is caused by the formation of microparticles in the adsorption layer. Aggregate formation in the solution bulk does not influence the surface properties significantly, except for a narrow concentration range where the aggregates form macroscopic flocks. The mechanism of the observed relaxation process is controlled by the mass exchange between the surface layer and the flocks attached to the liquid surface.  相似文献   

8.
A catalytic system consisting of carbon nanotubes, poly(diallyldimethylammonium)chloride, and a very thin layer of platinum or platinum-ruthenium is assembled layer-by-layer (LbL) on a glassy carbon (GC) electrode. Deposits of platinum metals are studied by electrochemical methods, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Such catalyst layers are shown to exhibit much higher activity in the methanol oxidation reaction as compared with commercial and electroplated catalysts. The currents compared are calculated per the surface area of deposited metals determined with respect to hydrogen adsorption.  相似文献   

9.
Superparamagnetic iron oxide particles with average size less than 20 nm were prepared by chemical co‐precipitation method in the air atmosphere. After that, polydimethyldiallyl ammonium chloride (PDDA) was used for wrapping iron oxide particles to obtain the core/shell nanocomposites. The parameters influencing properties of iron oxide particles and iron oxide/PDDA nanocomposites were investigated and optimized. The prepared iron oxide and nanocomposites were characterized by X‐ray diffraction (XRD) measurement, transmission electron microscopy (TEM), particle size and Zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometry (VSM), respectively. It was found that the iron oxide particles are cubic inverse spinel Fe3O4 with spherical shape. Superparamagnetic behavior of Fe3O4 with 73.114 emu/g is produced with NH4OH as precipitator, and decreased to 58.583 emu/g for Fe3O4/PDDA nanocomposites. The Zeta potential of nanocomposites is positive value. The results showed that Fe3O4/PDDA nanocomposites have excellent future using as a carrier for bonding with some negative charged particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
用最大泡压法分别测定了聚二甲基二烯丙基氯化铵,十六烷基三甲基溴化铵以及两者混合物水溶液的动表面张力。十六烷基三甲基溴化铵的吸附服从扩散-动力学控制机理。发现聚二甲基二烯丙基氯化铵水溶液的表面张力具有独特的时间相关性。吸附的前期服从扩散控制机理,而在吸附的后期,即接近吸附平衡时服从扩散-动力学控制机理。混合物水溶液的整个吸附过程受扩散控制。  相似文献   

11.
Experiments of coagulation kinetics were used to study the influence of the electrolyte concentration on the colloidal stability of cationic poly(methyl methacrylate) latex particles with various degrees of chitosan modification. For the chitosan-free latex products prepared by various levels of 2,2′ azobis(2-amidinopropane) dihydrochloride (V-50) at constant pH, the critical coagulation concentration (ccc) increases with increasing V-50 concentration, due to the enhanced particle surface charge density. On the other hand, the chitosan-modified latex products at constant pH do not exhibit very different values of ccc. This result is attributed to the counterbalance between two opposite effects related to the grafted chitosan, that is, the increased particle surface charge density and the enhanced shift of the particle's shear plane toward the aqueous phase with the chitosan content. The ccc of the latex products with various degrees of chitosan modification decreases significantly when the pH increases from 3 to 7. This is because the degree of ionization of the surface amino groups (the particle surface charge density) decreases with increasing pH. As a result, the stability of the colloidal system decreases significantly with increasing pH. The apparent Hamaker constant and diffuse potential were obtained from the coagulation kinetics data. These two parameters along with the zeta potential and particle size data for the latex samples taken immediately after the end of the coagulation experiments were also used to study the effect of ionic strength on the colloidal stability of the latex particles. Received: 10 October 1998 Accepted in revised form: 16 December 1998  相似文献   

12.
Well-aligned ZnO nanorods (NRs) were grown on indium-tin-oxide (ITO) slide by the hydrothermal method and used as templates for preparing ZnO/Au composite nanoarrays. The optical and morphological properties of ZnO/Au composites under various HAuCl(4) concentrations were explored via UV-vis absorption spectroscopy, photoluminescence (PL) and scanning electron microscopy (SEM). The density and size of gold nanoparticles (Au NPs) on ZnO NRs can be controlled by adjusting the concentration of HAuCl(4). The optimal ZnO/Au composites display complete photocatalytic degradation of methyl blue (MB) within 60 min, which is superior to that with pure ZnO NRs prepared by the same method. The reason of better photocatalytic performance is that Au NPs act as electron traps and it prevents the rapid recombination of electrons and holes, resulting in the improvement of photocatalytic efficiency. The photocatalytic performance of ZnO/Au composites is mainly controlled by the density of Au NPs formed on ZnO NRs. The application in rapid photodegradation of MB shows the potential of ZnO/Au composite as a convenient catalyst for the environmental purification of organic pollutants.  相似文献   

13.
In the present study, mixed liposomes of dihexadecyl phosphate sodium salt:phosphatidylcholine:cholesterol at a 1:19:9.5 molar ratio were allowed to interact with poly-L-arginine at temperatures below and above the main phase transition of the liposomal membrane. The interaction led to the formation of aggregates, which gradually increased in size and eventually precipitated. It was, however, possible, during the initial stage of the experiments, when the ratio of guanidinium group relative to phosphate was smaller than ca. 40%, to determine their size and charge and observe their morphology in aqueous dispersion. Fluorescence experiments established that the liposomes are not ruptured during their interaction with poly-L-arginine. Instead, they are attached at the polypeptide chain through the guanidinium-phosphate complementary pair. Fluorescence quenching experiments indicated that the poly-L-arginine chain is accessible for interaction with iodides dissolved in the aqueous phase when the temperature of the liposomal dispersion is below the main lipid phase transition. It is, however, partitioned in the interior of the membrane at temperatures exceeding this main lipid phase transition.  相似文献   

14.
Glucose oxidase showed direct electrochemical transfer at glassy carbon electrodes immobilized with carbon nanotube‐gold colloid (CNT‐Au) composites with poly(diallydimethylammonium chloride) (PDDA) coatings. The modified electrode (GC/CNT/Au/PDDA‐GOD) was employed for the amperometric determination of glucose. Under optimal conditions, the biosensor displayed linear response to glucose from 0.5 to 5 mM with a sensitivity of 2.50 mA M?1 at an applied potential of ?0.3 V (vs. Ag|AgCl reference).  相似文献   

15.
Coacervate behavior of polyelectrolyte complexes has been studied by many papers. Few studies have focused on the coacervate behavior of amphoteric polymer. In this study, amphoteric copolymer of diallyldimethylammonium chloride (DM) and sodium styrenesulfonate (SS) (the copolymer was noted as DMS) was synthesized with the mole content of SS to DM ranged from 0 to 10%. Firstly, DMS was characterized by static light scattering, FTIR, 1H-NMR, TGA and DSC. Then, its phase and coacervate behaviors were studied. Turbidity was utilized as an indicator for the coacervate formation. It was found that when the SS content was more than 4 mol%, DMS coacervate would be formed in deionized water at a certain concentration. Temperature and pH have no effect on the formation of DMS coacervate. Meanwhile, salts has a great influence on the DMS coacervation. Unlike the results of the other polyelectrolyte complexes, Na2SO4, Na2HPO4, NaCOOCH3, sodium citrate and NaI cannot prevent the DMS coacervate formation. However, the addition of NaCl, NaNO3, NaBr and NaSCN can prevent the coacervate formation. The influence cannot be described by Hofmeister-like behavior. Results of surface tension and fluorescence spectrum presented that the driving forces to formation of DMS coacervate are the electrostatic interaction and the intermolecular hydrophobic interaction.  相似文献   

16.
By means of the resonance light scattering (RLS) technique, a new method was developed to determine the bovine serum albumin (BSA) and human serum albumin (HSA) by the interaction of serum albumin with poly(diallyldimethylammonium chloride) (PDDA). At Tris-NaOH buffer solution, the RLS intensity of serum albumin at the wavelength 320, 550 and 590 nm was obviously enhanced in the presence of PDDA. The influences of some experimental factors, including incubation time, addition sequence of reagents, pH value, concentration of PDDA and foreign substances, on the enhancement of the RLS intensity were examined. The optimum conditions of the experiment were selected. Under the selected experimental condition, the enhanced RLS intensities were directly proportional to the concentrations in the range of (0.0250-2.75)x10(-6) mol/L for BSA and (0.0235-1.17)x10(-6) mol/L for HSA. The detection limits (S/N=3) were 8.40x10(-9) mol/L for BSA and 7.39x10(-9) mol/L for HSA. The synthetic samples were analysed and the results obtained were satisfactory.  相似文献   

17.
MW fractions of poly(dimethyldiallylammonium chloride) (PDMDAAC) were prepared by preparative size-exclusion chromatography and characterized by static and dynamic light scattering, viscometry, size-exclusion chromatography, and electrophoretic light scattering, in 0.50M NaCl solution. The behavior of fractions with MW < 2 × 105 was as expected for a strong polyelectrolyte in a good solvent, with a Mark-Houwink exponent of ca. 0.8, and MW-dependencies of the hydrodynamic radius and the radius of gyration of corresponding magnitude. At higher MW, curvature appears in the MW-dependencies, which can be best explained by the presence of branching. While this notably lowers the intrinsic viscosity at high MW, the electrophoretic mobility is unchanged regardless of molar mass. Thus, the branched polymers display the electrophoretic free-draining behavior characteristic of linear polyelectrolytes. ©1995 John Wiley & Sons, Inc.  相似文献   

18.
Semi‐interpenetrating polymer network (SIPN) hydrogels, composed of chitosan (CS) and poly(diallyldimethylammonium chloride) (PDADMAC), were prepared, and they exhibited electrically sensitive behavior. The swelling behavior of the CS/PDADMAC SIPN hydrogels was studied through the immersion of the gels in various concentrations of aqueous NaCl solutions, and their responses to stimuli in electric fields were also investigated. When the swollen SIPN hydrogels were placed between a pair of electrodes, they exhibited bending behavior upon the application of an electric field, which was stepwise and dependent on the magnitude of the field. To clarify the relationship between the equilibrium‐swelling ratio and the bending behavior of the SIPN hydrogels, the state of water in the SIPN hydrogels was also investigated with differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 914–921, 2004  相似文献   

19.
Simultaneous determination of catechol (CC) and hydroquinone (HQ) were investigated by voltammetry based on glassy carbon electrode (GCE) modified by poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G). The modified electrode showed excellent sensitivity and selectivity properties for the two dihydroxybenzene isomers. In 0.1 mol/L phosphate buffer solution (PBS, pH 7.0), the oxidation peak potential difference between CC and HQ was 108 mV, and the peaks on the PDDA-G/GCE were three times as high as the ones on graphene-modified glass carbon electrode. Under optimized conditions, the PDDA-G/GCE showed wide linear behaviors in the range of 1 × 10−6−4 × 10−4 mol/L for CC and 1 × 10−6−5 × 10−4 mol/L for HQ, with the detection limits 2.0 × 10−7 mol/L for CC and 2.5 × 10−7 mol/L for HQ (S/N = 3) in mixture, respectively. Some kinetic parameters, such as the electron transfer number (n), charge transfer coefficient (α), and the apparent heterogeneous electron transfer rate constant (k s), were calculated. The proposed method was applied to simultaneous determine CC and HQ in real water samples of Yellow River with satisfactory results.  相似文献   

20.
An enzyme-immobilized capillary microreactor for rapid protein digestion and proteomics analysis is reported. The inner surface of the fused-silica capillary was coated with poly(diallyldimethylammonium chloride) (PDDA)-entrapped silica sol-gel matrix, followed by assembly of trypsin onto the PDDA-modified surface via electrostatic adsorption. The immobilization parameters such as PDDA content in the sol-gel matrix, trypsin concentration and pH were investigated in detail. Protein samples including beta-casein, myoglobin and cytochrome c could be effectively digested and electrophoretically separated simultaneously in such a modified capillary. Just 2.26 ng (corresponding to 0.10-0.14 picomole) of sample was sufficient for on-line capillary electrophoresis peptide mapping. The efficiency of the digestion was further demonstrated by digestion of a human liver cytoplasm sample and 253 proteins were identified in one unique run.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号