首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of nickel, cobalt, and manganese with 1,2-ethylenediphosphonic acid or 1,2-ethylenediphosphonic acid and 1,10-phenanthroline under hydrothermal conditions resulted in the pillared layered structures Co2(H2O)2(O3PC2H4PO3) (I) and Ni2(H2O)2(O3PC2H4PO3) (II), which are isostructural to a zinc phase that has previously been characterized by X-ray powder methods. In addition, a 1D chain structure, Mn(HO3P(CH2)2PO3H)(H2O)2(C12H8N2) (III), and a pillared layered structure, Mn(HO3P(CH2)2PO3H) (IV), were obtained. The structures of these phases were solved by single-crystal X-ray diffraction methods. The crystallographic data are as follows: compound I P21/n (No. 14), a = 5.6500(11) A, b = 4.7800(10) A, c = 15.330(3) A, beta = 98.50(3) degrees, V = 409.47(14) A3, Z = 2; compound II P21/n (No. 14), a = 5.5807(11) A, b = 4.7205(9) A, c = 15.250(3) A, beta = 98.55(3) degrees, V = 397.28(13) A3, Z = 2; compound III C2/c (No. 15), a = 12.109(2) A, b = 15.328(3) A, c = 9.848(2) A, beta = 108.88(3) degrees, V = 1729.5(6) A3, Z = 4; compound IV P (No. 2), a = 5.498(5) A, b = 7.715(6) A, c = 8.093(7) A, alpha = 82.986(12) degrees, beta = 75.565(12) degrees, gamma = 80.582(12)degrees, V = 326.7(5) A3, Z = 2. Magnetic measurements show antiferromagnetic behavior below TN = 7 K for I and 13 K for II.  相似文献   

2.
Nihei M  Ui M  Hoshino N  Oshio H 《Inorganic chemistry》2008,47(14):6106-6108
A building unit of Prussian blue was isolated as a cyanide-bridged iron cube of [Fe(II)4Fe(III)4(CN)12(tp)8] x 12 DMF x 2 Et2O x 4 H2O [tp(-) = hydrotris(pyrazolyl)borate]. A cyclic voltammogram showed quasi-reversible four-stepped redox waves, which correspond to [Fe(III)4Fe(II)4]/[Fe(III)5Fe(II)3](+), [Fe(III)5Fe(II)3](+)/[Fe(III)6Fe(II)2](2+), [Fe(III)6Fe(II)2](2+)/[Fe(III)7Fe(II)1](3+), and [Fe(III)7Fe(II)1](3+)/[Fe(III)8](4+) processes. Controlled potential absorption spectral measurements revealed two intervalence charge-transfer bands at 816 and 1000 nm, which were assigned to charge transfers from Fe(II) ions to adjacent and remote Fe(III) ions, respectively, in the cube.  相似文献   

3.
Golden trefoils: Tris(alkyne)gold complex [(coct)(3)Au][SbF(6)] (see picture; 1-SbF(6)) can be synthesized from cyclooctyne (coct) and AuSbF(6) generated in situ. Treatment of AuCl with cyclooctyne led to the bis(alkyne)gold complex [Au(coct)(2)Cl] (2). DFT analysis indicates that the cyclooctyne ligands are net electron donors in 1 but overall electron acceptors in 2. AuSbF(6) is shown to mediate [2+2+2] cycloaddition reactions of alkynes.  相似文献   

4.
Yoon JH  Lee JW  Ryu DW  Choi SY  Yoon SW  Suh BJ  Koh EK  Kim HC  Hong CS 《Inorganic chemistry》2011,50(22):11306-11308
A 5d-3d bimetallic compound was prepared by self-assembling [W(CN)(8)](3-) and the Mn(III) Schiff bases. This neutral complex consists of cyanide-linked W(V)Mn(III) anionic chains and isolated Mn(III) Schiff base cations. We demonstrate that two types of relaxation processes are involved in the system; the low-T dynamics may come from magnetic domain dynamics and the high-T relaxation stems from the anionic chain, revealing single-chain magnet character.  相似文献   

5.
Based on solvothermal synthesis, self-assembly of the heptadentate 2,6-diacetylpyridine bis(nicotinoylhydrazone) Schiff base ligand (H2L) and Zn(II) and/or Cd(II) salts has led to the formation of three homometallic [CdL]n (1), {[CdL]∙0.5dmf∙H2O}n (2) and {[ZnL]∙0.5dmf∙1.5H2O}n (3), as well as two heterometallic {[Zn0.75Cd1.25L2]∙dmf∙0.5H2O}n (4) and {[MnZnL2]∙dmf∙3H2O}n coordination polymers. Compound 1 represents a 1D chain, whereas 2–5 are isostructural and isomorphous two-dimensional structures. The entire series was characterized by IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction and emission measurements. 2D coordination polymers accommodate water and dmf molecules in their cage-shaped interlayer spaces, which are released when the samples are heated. Thus, three solvated crystals were degassed at two temperatures and their photoluminescent and adsorption–desorption properties were recorded in order to validate this assumption. Solvent-free samples reveal an increase in volume pore, adsorption specific surface area and photoluminescence with regard to synthesized crystals.  相似文献   

6.
The reaction of [(p-cym)Ru(bpy)Cl](+) (p-cym = eta(6)-p-cymene; bpy = 2,2'-bipyridine) with SCN(-) gives a mixture of the linkage isomers [(p-cym)Ru(bpy)(SCN)](+) and [(p-cym)Ru(bpy)(NCS)](+). The linkage isomers were efficiently separated by column chromatography on Hg(NO3)2-coated Al2O3. Both isomers were fully characterized by elemental analysis, (1)H NMR and IR spectroscopy, and X-ray crystallography. The equilibrium constant for the conversion of the S-bound to the N-bound isomer was determined to be 0.29(4) in methanol-d4 and 0.74(7) in acetone-d6, respectively, at 50 degrees C. Kinetic data for the linkage isomerization reaction are also reported.  相似文献   

7.
Yoon JH  Kim HC  Hong CS 《Inorganic chemistry》2005,44(22):7714-7716
A cyanide-bridged W-Mn bimetallic compound [W(CN)(6)(bpy)](2)[Mn(H(2)O)(2)].4H(2)O (1) (bpy = 2,2'-bipyridine) with a one-dimensional, crossed double-zigzag chain structure was prepared by self-assembling [W(CN)(6)(bpy)](-) and Mn(2+) ions in a 2:1 reaction ratio. The magnetic properties of 1 exhibit a field-induced metamagnetic behavior.  相似文献   

8.
9.
Reactions of MnX2.nH2O with tris(N-(D-mannosyl)-2-aminoethyl)amine ((D-Man)3-tren), which was formed from D-mannose and tris(2-aminoethyl)amine (tren) in situ, afforded colorless crystals of [Mn((D-Man)3-tren)]X2 (3a, X = Cl; 3b, X = Br; 3c, X = NO3; 3d, X = 1/2SO4). The similar reaction of MnSO4.5H2O with tris(N-(L-rhamnosyl)-2-aminoethyl)amine ((L-Rha)3-tren) gave [Mn((L-Rha)3-tren)]SO4 (4d), where L-rhamnose is 6-deoxy-L-mannose. The structures of 3b and 4d were determined by X-ray crystallography to have a seven-coordinate Mn(II) center ligated by the N-glycoside ligand, (aldose)3-tren, with a C3 helical structure. Three D-mannosyl residues of 3b are arranged in a delta(ob3) configuration around the metal, leading to formation of a cage-type sugar domain in which a water molecule is trapped. In 4d, three L-rhamnosyl moieties are in a delta(lel3) configuration to form a facially opened sugar domain on which a sulfate anion is capping through hydrogen bonding. These structures demonstrated that a configurational switch around the seven-coordinate manganese(II) center occurs depending on its counteranion. Reactions of 3a, 3b, and 4d with 0.5 equiv of Mn(II) salt in the presence of triethylamine yielded reddish orange crystals formulated as [[Mn((aldose)3-tren)]2Mn(H2O)X3.nH2O (5a, aldose = D-Man, X = Cl; 5b, aldose = D-Man, X = Br; 6d, aldose = L-Rha, X = 1/2SO4). The analogous trinuclear complexes 6a (aldose = L-Rha, X = Cl), 6b (aldose = L-Rha, X = Br), and 6c (aldose = L-Rha, X = NO3) were prepared by the one-pot reaction of Mn(II) salts with (L-Rha)3-tren without isolation of the intermediate Mn(II) complexes. X-ray crystallographic studies revealed that 5a, 5b, 6c, and 6d have a linearly ordered trimanganese core, Mn(II)Mn(III)Mn(II), bridged by two carbohydrate residues with Mn-Mn separations of 3.845(2)-3.919(4) A and Mn-Mn-Mn angles of 170.7(1)-173.81(7) degrees. The terminal Mn(II) atoms are seven-coordinate with a distorted mono-face-capped octahedral geometry ligated by the (aldose)3-tren ligand through three oxygen atoms of C-2 hydroxyl groups, three N-glycosidic nitrogen atoms, and a tertiary amino group. The central Mn(III) atoms are five-coordinate ligated by four oxygen atoms of carbohydrate residues in the (aldose)3-tren ligands and one water molecule, resulting in a square-pyramidal geometry. In the bridging part, a beta-aldopyranosyl unit with a chair conformation bridges the two Mn(II)Mn(III) ions with the C-2 mu-alkoxo group and with the C-1 N-glycosidic amino and the C-3 alkoxo groups coordinating to each metal center. These structures could be very useful information in relation to xylose isomerases which promote aldose-ketose isomerization by using divalent dimetal centers such as Mn2+, Mg2+, and Co2+.  相似文献   

10.
Kang JE  Kim HB  Lee JW  Shin S 《Organic letters》2006,8(16):3537-3540
[reaction: see text] A study on the gold (I)-catalyzed intramolecular hydroamination of trichloroacetimidates derived from propargyl and homopropargyl alcohols is described. In the presence of 2-5 mol % of cationic Au(I) complex, a variety of trichloroacetimidates undergo efficient hydroamination under an exceptionally mild condition. An orthogonality of the current catalytic protocol with those using a stoichiometric electrophile as well as a preliminary synthetic application as a stable precursor of 2-acylamino-1,3-diene has been demonstrated.  相似文献   

11.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(16):6424-6430
Hydrothermal reactions of zinc(II) carbonate with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2) and 1,10-phenanthroline (phen) or 4,4'-bipyridine (bipy) lead to three novel zinc(II) sulfonate-phosphonates, namely, [Zn(phen)3]2[Zn4(m-O3S-Ph-PO3)4(phen)4].20H2O (1), [Zn6(m-O3S-Ph-PO3)4(phen)8].11H2O (2), and [Zn6(m-O3S-Ph-PO3)4(bipy)6(H2O)4].18H2O (3). Compound 1 contains a tetranuclear zinc(II) cluster anion in which four Zn(II) ions are bridged by two tetradentate and two bidentate phosphonate groups, and the four negative charges of the cluster are compensated by two [Zn(phen)3]2+ cations. Compound 2 features a hexanuclear zinc(II) cluster in which the same tetranuclear cluster of 1 is bridged with two additional Zn(II) ions. The structure of 3 features a porous 3D network based on hexanuclear zinc(II) units of [Zn6(m-O3S-Ph-PO3)4] interconnected by 4,4'-bipy ligands. The hexanuclear cluster in 3 is different from that in 2 in that all four phosphonate groups in 3 are tridentate bridging. Compounds 1, 2, and 3 exhibit broad blue fluorescent emission bands at 378, 409, and 381 nm, respectively.  相似文献   

12.
The nitrosation of monophenylamido substituted quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.  相似文献   

13.
Reaction of H(3)L(1), the Schiff base condensate of tris(2-aminoethyl)amine with three equivalents of 5-methyl-1H-pyrazole-3-carboxaldehyde, with manganese(II)perchlorate or iron(II)tetrafluoroborate results in the isolation of [MH(3)L(1)]X(2) (M = Mn and X = ClO(4) and M = Fe and X = BF(4)). These complexes are high spin d(5) and d(6), respectively, as inferred from the long M-N bond distances obtained by single crystal X-ray diffraction for both and variable temperature magnetic susceptibility and M?ssbauer spectroscopy for the iron complex. Aerobic treatment of a solution of [CoH(3)L(1)](2+) with three equivalents of potassium hydroxide produced [CoL(1)]. Homonuclear pseudo-dimers were prepared by the aerobic reaction of [FeH(3)L(1)](BF(4))(2) with 1.5 equivalents of potassium hydroxide to give {[FeH(1.5)L(1)](BF(4))}(2) or by the metathesis reaction of [FeH(2)L(1)][FeHL(1)](ClO(4))(2) with sodium hexafluorophosphate to give [FeH(3)L(1)][FeL(1)](PF(6))(2). The complexes were characterized by EA, IR, ESI-MS, variable temperature single crystal x-ray diffraction and M?ssbauer spectroscopy. The iron(III) atom is low spin while the iron(II) atom is spin crossover. Heteronuclear pseudo-dimers were prepared by the 1:1 reaction of [FeH(3)L(1)](BF(4))(2) or [MnH(3)L(1)](ClO(4))(2) with [CoL(1)]. [MH(3)L(1)][CoL(1)](X)(2) (M = Fe and X = BF(4) or M = Mn and X = ClO(4)), were characterized by IR, EA, variable temperature single crystal X-ray diffraction and M?ssbauer spectroscopy in the iron case. The data support a spin crossover and high spin assignment for the iron(II) and manganese(II), respectively. DFT calculations demonstrate that the spin state of the iron(II) atom in {[FeH(3)L(1)][FeL(1)]}(2+) changes from high spin to low spin as the iron(II)-iron(III) distance decreases. This is supported by experimental results and is a result of hydrogen bonding interactions which cause a significant compression of the M(II)-N(pyrazole) bond distances.  相似文献   

14.
Two new tetracyano complexes of the composition MnenNi(CN)4 and MnenCd(CN)4 were prepared and identified. Their struture and properties were investigated by IR and UV-VIS spectroscopy, X-ray powder diffraction and by measuring magnetic moments. The results were confronted with the structure and properties of the compounds CdenNi(CN)4 and CdenCd(CN)4. The results of this study show a considerable similarity between these groups of compounds. The thermal behaviour of all the examined compounds was investigated derivatographically. The following order of thermal stability of the investigated complexes was observed: Cd?Cd(215°C)相似文献   

15.
Single crystal photocrystallographic experiments and solid state Raman spectroscopy have been used to determine the low temperature, metastable structures of the nickel(ii) nitrito complexes [Ni(aep)(2)(η(1)-ONO)(2)] 1#O (aep = 1-(2-aminoethyl)piperidine), [Ni(aem)(2)(η(1)-ONO)(2)] 2#O (aem = 1-(2-aminoethyl)morpholine), and [Ni(aepy)(2)(η(1)-ONO)(2)] 3#O (aepy = 1-(2-aminoethyl)pyrrolidine and where the #O denotes the oxygen-bound nitrito metastable molecule). These linkage isomers of the equivalent nitro complexes [Ni(aep)(2)(η(1)-NO(2))(2)] 1, [Ni(aem)(2)(η(1)-NO(2))(2)] 2 and [Ni(aepy)(2)(η(1)-NO(2))(2)] 3 are formed by LED irradiation at temperatures below 120 K. The behavior of the three complexes upon irradiation is generally similar, but some subtle differences have been observed. From the crystallographic studies all three complexes 1-3 exhibit the endo-nitrito linkage isomer upon irradiation, however, for 3# (a crystal structure that contains components of both 3 and 3#O) an exo-nitrito isomer is also observed. Under conditions of 90-100 K, with blue light, the conversion percentages to the nitrito isomers, 1#O, 2#O and 3#O were 16%, 22% and 30%, respectively. At temperatures below 110 K all three nitrito isomers were stable for over four hours but while 2#O and 3#O could be detected at temperatures down to 30 K, at temperatures below 60 K the metastable structure 1#O appeared to be quenched and only the nitro isomer 1 was identified in the crystal. The solid state Raman spectra for 1#, 2# and 3# confirmed the photocrystallographic results with the nitrito isomers being identified from the O-N-O deformation vibrations.  相似文献   

16.
The reaction between Mn(ClO 4) 2 and di-(2-pyridyl)-ketone in the presence of the sodium salt of propanediol as a base in MeOH leads to the formation of a hexanuclear manganese cluster. This cluster has been characterized by the formula [Mn(II) 3Mn(III) 3O(OH)(CH 3pdol) 3(Hpdol) 3(pdol)](ClO 4) 4 ( 1). Molecular conductance measurements of a 10 (-3) M solution of compound 1 in CH 3CN, DMSO, or DMF give Lambda m = 529, 135, or 245 muS/cm, respectively, which suggests a 1:4 cation/anion electrolyte. The crystal structure of hexanuclear manganese cluster 1 consists of two distinct trinuclear units with a pseudocubane-like arrangement. The trinuclear units show two different valence distributions, Mn(II)/Mn(III)/Mn(II) and Mn(III)/Mn(II)/Mn(III). Additional features of interest for the compound include the fact that (a) two of the Mn(III) ions show a Jahn-Teller elongation, whereas the third ion shows a Jahn-Teller compression; (b) one bridge between Mn(III) atoms is an oxo (O (2-)) ion, whereas the bridge between Mn(II) and Mn(III) is a hydroxyl (OH (-)) group; and (c) the di-(2-pyridyl)-ketone ligand that is methanolyzed to methyl-Hpdol and R 2pdol (R = CH 3, H) acts in three different modes: methyl-pdol(-1), Hpdol(-1), and pdol(-2). For magnetic behavior, the general Hamiltonian formalism considers that (a) all of the interactions inside the two "cubanes" between Mn(II) and Mn(III) ions are equal to the J 1 constant, those between Mn(II) ions are equal to the J 2 constant, and those between the Mn(III) ions are equal to the J 3 constant and (b) the interaction between the two cubanes is equal to the J 4 constant. The fitting results are J 1 = J 2 = 0.7 cm (-1), J 3 approximately 0.0, J 4 = -6.2 cm (-1), and g = 2.0 (fixed). According to these results, the ground state is S = 1/2, and the next excited states are S = 3/2 and 5/2 at 0.7 and 1.8 cm (-1), respectively. The EPR spectra prove that the spin ground state at a low temperature is not purely S = 1/2 but is populated with the S = 3/2 state, which is in accordance with the susceptibility and magnetization measurements.  相似文献   

17.
Six new homobimetallic and heterobimetallic complexes of rhenium(I) and ruthenium(II) bridged by ethynylene spacer [(CO)3(bpy)Re(BL)Re(bpy)(CO)3]2+ [Cl(bpy)2Ru(BL)Ru(bpy)2Cl]2+ and [(CO)3(bpy)Re(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridine, BL = 1,2-bis(4-pyridyl)acetylene (bpa) and 1,4-bis(4-pyridyl)butadiyne (bpb) are synthesized and characterized. The electrochemical and photophysical properties of all the complexes show a weak interaction between two metal centers in heterobimetallic complexes. The excited state lifetime of the complexes is increased upon introduction of ethynylene spacer and the transient spectra show that this is due to delocalization of electron in the bridging ligand. Also, intramolecular energy transfer from *Re(I) to Ru(II) in Re–Ru heterobimetallic complexes occurs with a rate constant 4 × 107 s−1.  相似文献   

18.
Complexes [M(II)Gd(III){pyCO(OEt)pyC(OH)(OEt)py}?](ClO?)?·EtOH [M(II) = Cu(II) (1), Mn(II) (2), Ni(II) (3), Co(II) (4) and Zn(II) (5)] crystallize in the monoclinic Cc space group and contain one hexacoordinate M(II) ion and one enneacoordinate Gd(III) ion, bridged by three {pyCO(OEt)pyC(OH)(OEt)py}? ligands. Magnetic susceptibility measurements indicate a ferromagnetic interaction for 1 and antiferromagnetic interactions for 2-4. Using the ? = -J?(Gd(III))?(M(II)) spin Hamiltonian formalism, fits to the magnetic susceptibility data yielded J values of +0.32 cm?1 for 1, -1.7 cm?1 for 2, and -0.22 cm?1 for 3. In complex 4, the orbital contributions of Co(II) precluded the determination of the magnetic coupling. The complex follows the Curie-Weiss law with θ = -2.07 K (-1.44 cm?1).  相似文献   

19.
The complexes [Zn(BdH)2Cl2] and [Mn(BdH)2Cl2] have been prepared and studied by IR, electronic and ESR spectroscopies and by magnetic measurements. All results agree with a molecular formula for both complexes and a distorted octahedral environment for the metal atoms.  相似文献   

20.
Electronic structure calculations employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been carried out on the model complexes {[(HCO2)3M2]2(mu-O2CCO2)}0/+(M=Mo or W) in D2h symmetry, where the oxalate bridge forms either five- or six-membered rings with the M(2) centres; the complexes are hereafter referred to as mu(5,5)0/+ and mu(6,6)0/+, respectively. The calculations predict that the neutral complexes should exist as the mu(5,5) linkage isomer, while the radical cations favour the mu(6,6) isomer by ca. 4-6 kJ mol-1. For the mu(5,5) isomers, the rotational barriers about the oxalate C-C bond have been calculated to be 15.9 and 27.2 kJ mol-1 for M=Mo and W, respectively. For the cationic mu(5,5)+ isomers the barrier is higher, being 36.8 and 50.6 kJ mol-1 for M=Mo and W, respectively. The calculated Raman and visible near-IR spectra for the mu(5,5)0/+ and mu(6,6)0/+ are compared with experimental data obtained for the {[(tBuCO2)3M2]2(mu-O2CCO2)}0/+ complexes, hereafter referred to as M4OXA0/+(M=Mo or W). The experimental data more closely correlate with that calculated for the mu(5,5)0/+ linkage isomers, and the 13C-NMR spectrum of the mixed metal complex Mo2W2OXA indicates the presence of the 5-membered oxalate-bridged species (J(CC)=100 Hz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号