首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We consider the problem of scheduling a sequence of packets over a linear network, where every packet has a source and a target, as well as a release time and a deadline by which it must arrive at its target. The model we consider is bufferless, where packets are not allowed to be buffered in nodes along their paths other than at their source. This model applies to optical networks where opto-electronic conversion is costly, and packets mostly travel through bufferless hops. The offline version of this problem was previously studied in M. Adler et al. (2002) [3]. In this paper we study the online version of the problem, where we are required to schedule the packets without knowledge of future packet arrivals. We use competitive analysis to evaluate the performance of our algorithms. We present the first online algorithms for several versions of the problem. For the problem of throughput maximization, where all packets have uniform weights, we give an algorithm with a logarithmic competitive ratio, and present some lower bounds. For other weight functions, we show algorithms that achieve optimal competitive ratios.  相似文献   

2.
We present an extension of a classical data management subproblem, the page migration. The problem is investigated in dynamic networks, where costs of communication between different nodes may change with time. We construct asymptotically optimal online algorithms for this problem, both in deterministic and randomized scenarios.  相似文献   

3.
In this paper, we consider the problem of designing urban optical networks. In particular, given a set of telephone exchanges, we must design a collection of ring-stars, where each ring-star is a cycle composed of a telephone exchange, some customers, some transition points used to save routing costs and customers not on the cycle connected to the cycle by a single edge. The ring topology is chosen in many fiber optic communication networks since it allows to prevent the loss of connection due to a single edge or even a single node failure. The objective is to minimize the total cost of the optical network which is mainly due to the excavation costs. We call this problem Multi-Depot Ring-Star Problem (MDRSP) and we formulate it as an optimization problem in Graph Theory. We present lower bounds and heuristic algorithms for the MDRSP. Computational results on randomly generated instances and real-life datasets are also presented.  相似文献   

4.
We study a problem of optimal bandwidth allocation in the elastic optical networks technology, where usable frequency intervals are of variable width. In this setting, each lightpath has a lower and upper bound on the width of its frequency interval, as well as an associated profit, and we seek a bandwidth assignment that maximizes the total profit. This problem is known to be NP-complete. We strengthen this result by showing that, in fact, the problem is inapproximable within any constant ratio even on a path network. We further derive NP-hardness results and present approximation algorithms for several special cases of the path and ring networks, which are of practical interest. Finally, while in general our problem is hard to approximate, we show that an optimal solution can be obtained by allowing resource augmentation. Some of our results resolve open problems posed by Shalom et al. (2013) [28]. Our study has applications also in real-time scheduling.  相似文献   

5.
We consider a conflict-free scheduling problem which arises in railway networks, where ideal timetables have been provided for a set of trains, but where these timetables may be conflicting. We use a space-time graph approach from the railway scheduling literature in order to develop a fast heuristic which resolves conflicts by adjusting the ideal timetables while attempting to minimize the deviation from the ideal timetable. Our approach is tested on realistic data obtained from the railway node of Milan.  相似文献   

6.
Jamming communication networks under complete uncertainty   总被引:1,自引:0,他引:1  
This paper describes a problem of interdicting/jamming wireless communication networks in uncertain environments. Jamming communication networks is an important problem with many applications, but has received relatively little attention in the literature. Most of the work on network interdiction is focused on preventing jamming and analyzing network vulnerabilities. Here, we consider the case where there is no information about the network to be jammed. Thus, the problem is reduced to jamming all points in the area of interest. The optimal solution will determine the locations of the minimum number of jamming devices required to suppress the network. We consider a subproblem which places jamming devices on the nodes of a uniform grid over the area of interest. The objective here is to determine the maximum grid step size. We derive upper and lower bounds for this problem and provide a convergence result. Further, we prove that due to the cumulative effect of the jamming devices, the proposed method produces better solutions than the classical technique of covering the region with uniform circles.  相似文献   

7.
The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks.We provide a brief introduction into the field of social networks and present an overview of existing network models and methods. Subsequently we introduce an elementary problem field in the social sciences in general, and in studies of organizational change and design in particular: the micro-macro link. We argue that the most appropriate way to hadle this problem is the principle of methodological individualism. For social network analysis, to contribute to this theoretical perspective, it should include an individual choice mechanism and become more dynamically oriented. Subsequently, object oriented modeling is advocated as a tool to meet these requirements for social network analysis. We show that characteristics of social systems that are emphasized in the methodological individualistic approach have their direct equivalences in object oriented models. The link between the micro level where actors act, and the macro level where phenomena occur as a consequence and cause of these actions, can be modelled in a straightforward way.  相似文献   

8.
This paper deals with a single allocation problem in hub-and-spoke networks. We present a simple deterministic 3-approximation algorithm and randomized 2-approximation algorithm based on a linear relaxation problem and a randomized rounding procedure. We handle the case where the number of hubs is three, which is known to be NP-hard, and present a (5/4)-approximation algorithm.The single allocation problem includes a special class of the metric labeling problem, defined by introducing an assumption that both objects and labels are embedded in a common metric space. Under this assumption, we can apply our algorithms to the metric labeling problem without losing theoretical approximation ratios. As a byproduct, we also obtain a (4/3)-approximation algorithm for an ordinary metric labeling problem with three labels.  相似文献   

9.
We provide an account of recent work that formulates and addresses problems that arise when employing wireless networks to serve clients that generate real-time flows. From a queueing systems perspective, these problems can be described as single-server problems where there are several customer classes. Customers balk when their delay exceeds a threshold. There are a range of issues that are of interest. One of the first such issues is to determine what throughput rate vectors are feasible, and to determine the server’s schedule. Another is to maximize a utility function of the departure rates of the customer classes. Real-time flows have a delay bound for each of their packets. It is particularly challenging to provide delay guarantees for real-time flows in wireless networks since wireless transmissions are unreliable. We propose a model that jointly considers the delay bounds of packets, the unreliable wireless channels, and the throughput requirements of clients. We then determine the necessary and sufficient condition for feasibility of the client requirements. The analysis and condition are interesting since this problem gives rise to some new features concerning unavoidable idle times in a system. We further derive an efficient, nearly linear time algorithm for admission control, which precisely determines whether it is feasible to fulfill the requirements of all clients in the system. We also propose two on-line scheduling policies and prove that they can fulfill the requirements of all clients whenever that is feasible. We next turn to the scenario where the throughput requirements of clients are elastic, but with hard delay bounds. We formulate this as a utility maximization problem, where client utilities are based on their throughputs. We decompose this problem into two subproblems, and show that this decomposition can be naturally implemented as a bidding game among all clients and the access point, which plays the role of a centralized scheduler. In the bidding game, the strategy of each client is to carry out a simple selfish optimization. We show that the strategy of the access point can be implemented by a simple on-line scheduling policy. A surprising result is that the channel reliabilities need not be known a priori.  相似文献   

10.
This paper is concerned with the design and analysis of algorithms for optimization problems in arc-dependent networks. A network is said to be arc-dependent if the cost of an arc a depends upon the arc taken to enter a. These networks are fundamentally different from traditional networks in which the cost associated with an arc is a fixed constant and part of the input. We first study the arc-dependent shortest path (ADSP) problem, which is also known as the suffix-1 path-dependent shortest path problem in the literature. This problem has a polynomial time solution if the shortest paths are not required to be simple. The ADSP problem finds applications in a number of domains, including highway engineering, turn penalties and prohibitions, and fare rebates. In this paper, we are interested in the ADSP problem when restricted to simple paths. We call this restricted version the simple arc-dependent shortest path (SADSP) problem. We show that the SADSP problem is NP-complete. We present inapproximability results and an exact exponential algorithm for this problem. We also extend our results for the longest path problem in arc-dependent networks. Additionally, we explore the problem of detecting negative cycles in arc-dependent networks and discuss its computational complexity. Our results include variants of the negative cycle detection problem such as longest, shortest, heaviest, and lightest negative simple cycles.2  相似文献   

11.
The problem of determining link tolls to reduce traffic congestion is often referred as a toll design problem. In this paper, optimal tolls are determined for signal-controlled junctions in urban traffic road networks where the rerouting traffic is properly taken into account. This problem can be formulated as a mathematical program with equilibrium constraints (MPEC) where the user equilibrium is expressed as a variational inequality problem. Due to the non-differentiability of the equilibrium problem, an efficient convergent solution scheme is established. Numerical calculations are conducted on a variety of example road networks and comparisons are made with earlier methods.  相似文献   

12.
We consider the problem of achieving coordinated actions in a real-time distributed system. In particular, we consider how closely (in terms of real time) processors can be guaranteed to perform a particular action, in a system where message transmission is guaranteed, but there is some uncertainty in message transmission time. We present an algorithm to achieve optimal precision in arbitrary networks. In networks where clocks run at the rate of real time, the optimal precision achievable in a network is exactly how tightly clocks can be guaranteed to be synchronized.  相似文献   

13.
The large-scale base station planning problem for wideband code division multiple access (WCDMA) wireless networks is studied in this paper. A new rolling window optimization method is presented, where the global optimization problem is decomposed into small optimization sub-problems, which are defined on a series of successive rolling windows. Effective rolling strategies are designed in the rolling optimization method based on the prediction of the interference among the base stations in the WCDMA wireless network. We show that the proposed method has the property that the global objective is non-increasing in the successive optimization procedure. Simulations are carried out to analyze the performance of the proposed optimization method, which show the importance of the rolling strategy.  相似文献   

14.
The constrained maximum flow problem is to send the maximum flow from a source to a sink in a directed capacitated network where each arc has a cost and the total cost of the flow cannot exceed a budget. This problem is similar to some variants of classical problems such as the constrained shortest path problem, constrained transportation problem, or constrained assignment problem, all of which have important applications in practice. The constrained maximum flow problem itself has important applications, such as in logistics, telecommunications and computer networks. In this research, we present an efficient specialized network simplex algorithm that significantly outperforms the two widely used LP solvers: CPLEX and lp_solve. We report CPU times of an average of 27 times faster than CPLEX (with its dual simplex algorithm), the closest competitor of our algorithm.  相似文献   

15.
This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times.  相似文献   

16.
We study the computational complexity of the Spare Capacity Allocation problem arising in optical networks that use a shared mesh restoration scheme. In this problem we are given a network with edge capacities and point-to-point demands, and the goal is to allocate two edge-disjoint paths for each demand (a working path and a so-called restoration path, which is activated only if the working path fails) so that the capacity constraints are satisfied and the total cost of the used and reserved bandwidth is minimized. We focus on the setting where we deal with a group of demands together, and select their restoration paths simultaneously in order to minimize the total cost. We investigate how the computational complexity of this problem is affected by certain parameters, such as the number of restoration paths to be selected, or the treewidth of the network graph. To analyze the complexity of the problem, we introduce a generalization of the Steiner Forest problem that we call Multicost Steiner Subgraph. We study its parameterized complexity, and identify computationally easy and hard cases by providing hardness proofs as well as efficient (fixed-parameter tractable) algorithms.  相似文献   

17.
Queueing theory is typically concerned with the solution of direct problems, where the trajectory of the queueing system, and laws thereof, are derived based on a complete specification of the system, its inputs and initial conditions. In this paper we point out the importance of inverse problems in queueing theory, which aim to deduce unknown parameters of the system based on partially observed trajectories. We focus on the class of problems stemming from probing based methods for packet switched telecommunications networks, which have become a central tool in the measurement of the structure and performance of the Internet. We provide a general definition of the inverse problems in this class and map out the key variants: the analytical methods, the statistical methods and the design of experiments. We also contribute to the theory in each of these subdomains. Accordingly, a particular inverse problem based on product-form queueing network theory is tackled in detail, and a number of other examples are given. We also show how this inverse problem viewpoint translates to the design of concrete Internet probing applications.  相似文献   

18.
This paper deals with the transit passenger origin-destination (O-D) estimation problem by using updated passenger counts in congested transit networks and outdated prior O-D matrix. A bilevel programming approach is extended for the transit passenger O-D updating problem where the upper-level problem seeks to minimize the sum of error measurements in passenger counts and O-D matrices, while the lower level is the stochastic user equilibrium assignment problem for congested transit networks. The transit assignment framework is based on a frequency-adaptive transit network model in this paper, which can help determine transit line frequencies and the network flow pattern simultaneously in congested transit networks. A heuristic solution algorithm is adapted for solving the transit passenger O-D estimation problem. Finally, a numerical example is used to illustrate the applications of the proposed model and solution algorithm. The work described in this paper was mainly supported by two research grants from the Research Grants Council of the Hong Kong Special Administrative Region (Project No. PolyU 5143/03E and PolyU 5040/02E).  相似文献   

19.

We study the classical problem introduced by R. Isaacs and S. Gal of minimizing the time to find a hidden point H on a network Q moving from a known starting point. Rather than adopting the traditional continuous unit speed path paradigm, we use the dynamic “expanding search” paradigm recently introduced by the authors. Here the regions S(t) that have been searched by time t are increasing from the starting point and have total length t. Roughly speaking the search follows a sequence of arcs \(a_i\) such that each one starts at some point of an earlier one. This type of search is often carried out by real life search teams in the hunt for missing persons, escaped convicts, terrorists or lost airplanes. The paper which introduced this type of search solved the adversarial problem (where H is hidden to maximize the time to be found) for the cases where Q is a tree or is 2-arc-connected. This paper’s main contribution is to give two strategy classes which can be used on any network and have expected search times which are within a factor close to 1 of the value of the game (minimax search time). These strategies classes are respectively optimal for trees and 2-arc-connected networks. We also solve the game for circle-and-spike networks, which can be considered as the simplest class of networks for which a solution was previously unknown.

  相似文献   

20.
The Steiner problem in networks is concerned with the determination of a minimum cost subnetwork connecting some (not necessarily all) vertices of an underlying network. The decision version of the Steiner problem is known to be NP-complete. However, if the underlying network is outerplanar or series-parallel, linear time algorithms have been developed.In this paper a linear time algorithm for the Steiner problem in Halin networks is presented. This result provides another example where the recursive structure of the underlying network leads to an efficient algorithm. Furthermore, the result is of interest from the network design point of view, since Halin networks are nontrivial generalizations of tree and ring networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号