首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of terpenes in white wines using SPE-SPME-GC/MS approach   总被引:3,自引:0,他引:3  
Terpenes contribute to some white wines aroma, especially these produced from Muscat grapes and others aromatic ones of high terpene contents (Gewürtztramminer, Traminer, Huxel, Sylvaner). Terpenes are present in wine in free and bound (in a form of glycosides) forms. Analyses of bound terpenes are usually performed using solid phase extraction after hydrolysis of glycosides. A new method for determination of terpenes from wine, focused on determination of terpenes released after acidic hydrolysis, based on solid phase extraction (SPE) followed by solid phase microextraction (SPME) was developed. Non-polar (free) and polar (bound terpenes) fractions were separated on 500 mg C18 cartridges. Bound terpenes were sampled using SPME immediately after acidic hydrolysis in non-equilibrium conditions. Application of combined SPE-SPME approach allowed quantification of selected terpenes in lower concentrations than in SPE approach and added a selectivity to the method, which enabled detection of compounds non-detectable in SPE extracts. Results obtained by SPE and SPE-SPME approach were correlated for free terpenes and those released after acid hydrolysis 20 white wines obtained from different grape varieties (R2 = 0.923). Although developed for wine terpenes analysis, SPE followed by SPME approach has a great potential in analysis of other bound wine flavor compounds, especially those potent odorants present in trace amounts.  相似文献   

2.
A method based on solid-phase microextraction (SPME) followed by on-fiber derivatization and gas chromatography–mass spectrometry detection (GC–MS) for determination of phenol in air was developed. Three different types of SPME fibers, polar and non-polar poly(dimethylsiloxane) (PDMS) and polyethylene glycol (PEG) were synthesized using sol–gel technology and their feasibility to the sampling of phenol were investigated. Different derivatization reagents for post on-fiber derivatization of phenol were studied. Important parameters influencing the extraction and derivatization process such as type of fiber coating, type and volume of derivatizing reagent, derivatization time and temperature, extraction time, and desorption conditions were investigated and optimized. The developed method is rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. Under the optimized conditions, the detection limit of the method was 5 ng L−1 using selected ion monitoring (SIM) mode. The inter-day and intra-day precisions of the developed method under optimized conditions were below 10%, and the method shows linearity in the range of 20 ng L−1 to 500 μg L−1with the correlation coefficient of >0.99. The optimized method was applied to the sampling of phenol from some biologics production areas. The compared results obtained using current and standard methods were shown to be satisfactory.  相似文献   

3.
Solid-phase microextraction (SPME) coupled to ultrasonic extraction was evaluated for extracting trace amounts of two agrochemical fungicides, vinclozolin and dicloran, in soil samples. Extraction was performed following two experimental approaches prior to the submission of the aqueous extracts to SPME-GC analysis. In the first approach, extraction involved sample homogenization with a water solution containing 5% (v/v) acetone and centrifugation prior to fiber extraction. In the second approach, the extraction of the fungicides from the soil samples was conducted using acetone as organic solvent which was then diluted with water to give a 5% (v/v) content. The pesticides were isolated with fused silica fiber coating with 85 μm polyacrylate. Parameters that affect both the extraction of the fungicides by the soil samples and the trapping of the analytes by the fiber were investigated and their impact on the SPME-GC-MS was studied. The procedures with respect to repeatability and limits of detection were evaluated by soil spiked with both analytes. Repeatability was between 5.6 and 14.2% and the limits of detection were 2-13 ng g−1. The efficiency of acetone/SPME was generally better than that for water/SPME procedure showing good linearity (R2>0.99) with coefficient variations below 9%, recoveries higher than 91% and limits of detection between 2 and 3 ng g−1. Finally, the recoveries obtained with acetone/SPME procedure were compared with the conventional liquid-liquid extraction using real soil samples. The acetone/SPME method was shown to be an inexpensive, fast and simple preparation method for the determination of target analytes at low nanogram per gram levels in soils.  相似文献   

4.
Farajzadeh MA  Rahmani NA 《Talanta》2005,65(3):700-704
A new solid-phase microextraction (SPME) fiber has been developed and applied for the determination of some amines (n-pentylamine, tripropylamine, dibutylamine, diisobutylamine and tributylamine). In this study two copper wires were immersed in sodium chloride solution and electrolysis was performed at a constant potential. Anode was oxidized to copper(I) to produce copper(I) chloride as a sorbent for the studied amines on the copper wire. Several parameters affecting the fiber preparation and SPME procedure such as electrolysis time, selection of the SPME coating, extraction time and temperature were optimized. The copper(I) chloride fiber was the most appropriate one for the determination of amines by SPME-GC-FID. The optimized method was linear over the range studied (1-100 μg L−1) and showed good precision, with R.S.D values less than 3% for all analytes. Fiber production was reproducible and R.S.D for fiber-to-fiber was less than 8%. The proposed SPME-GC method showed some advantages such as lower detection limits, a shorter analysis time and the avoidance of expensive commercial fibers.  相似文献   

5.
Mutagenic and carcinogenic heterocyclic amines (HCAs) are formed during heating of various proteinaceous foods, but human exposure to HCAs has not yet been elucidated in detail. To assess long-term exposure to HCAs, we developed a simple and sensitive method for measuring HCAs in hair by automated on-line in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). Using a Zorbax Eclipse XDB-C8 column, 16 HCAs were analyzed within 15 min. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL sample at a flow rate of 200 μL min−1 using a Supel-Q PLOT capillary column as an extraction device. The extracted HCAs were easily desorbed from the column by passage of the mobile phase, with no carryover observed. This in-tube SPME LC–MS/MS method showed good linearity for HCAs in the range of 10–2000 pg mL−1, with correlation coefficients above 0.9989 (n = 18), using stable isotope-labeled HCA internal standards. The detection limits (S/N = 3) of 14 HCAs except for MeAαC and Glu-P-1 were 0.10–0.79 pg mL−1. This method was successfully utilized to analyze 14 HCAs in hair samples without any interference peaks, with quantitative limits (S/N = 10) of about 0.17–1.32 pg mg−1 hair. Using this method, we evaluated the exposure to HCAs in cigarette smoke and the suitability of using hair HCAs as exposure biomarkers.  相似文献   

6.
The beneficial effects of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF4) ionic liquid (IL) as mobile phase additive, desorption solvent, and memory effect suppressor in solid-phase microextraction (SPME)–high-performance liquid chromatography with fluorescence detection for the determination of six heterocyclic aromatic amines have been evaluated for the first time. Several chromatographic parameters have been evaluated in the presence or absence of IL or using triethylamine as the most common mobile phase additive, with a Nova-Pak® C18 stationary phase. This IL was found to be clearly superior to triethylamine for efficiency as well as peak shape enhancement and sensitivity increase. SPME was chosen because it is faster than conventional extraction techniques and allowed us to minimize the use of organic solvents. However, memory effect may become a problem when a high-sensitivity detector is used. The appropriate conditions for the desorption step and to eliminate the memory effect involving BMIm-BF4 were established and optimized. The method was applied for the determination of these compounds in commercial meat extracts.  相似文献   

7.
Ultrasound-assisted extraction (UAE) and direct immersion solid-phase microextraction (DI-SPME) were evaluated for the monoterpenic compounds determination in wine samples. The wine extracts obtained were analyzed by gas chromatography-mass spectrometry (GC-MS). The optimization of the variables affecting UAE and SPME methods was carried out in order to achieve the best extraction efficiency. Both UAE and SPME are quantitative (recoveries in the range 93-97% and 71.8-90.9%, respectively), precise (coefficients of variation below 5.5%), sensitive (limits of detection between 30-39 μg L−1 and 11-25 μg L−1, respectively) and linear over one order of magnitude. The application of both methods to red wine samples showed that UAE provided higher extraction of monoterpenic compounds than SPME. Although SPME remains an attractive alternative technique due to its speed, low sample volume requirements and solvent free character.  相似文献   

8.
In this paper we describe an environmentally friendly and sensitive method for the determination of ten primary amines in sewage sludge. The method is based on pressurised hot water extraction (PHWE) followed by simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) and subsequent gas-chromatography ion-trap tandem mass spectrometry (GC-IT-MS-MS) analysis. The influence of the main factors on the PHWE of sludge was optimized by a central composite design. For all species the optimal conditions were water at pH 4 as the extracting solvent, an extraction temperature of 100 °C and an extraction time of 15 min. The separation and detection of the ten amines by GC-IT-MS-MS took just 10 min and the entire process took approximately 1 h. Repeatability and reproducibility between days, expressed as RSD (%) (n = 5), were less than 19 and 24%, respectively. The average limit of detection (LOD) was of 65 μg kg−1 s (range found 9-135) and the average limit of quantification (LOQ) was of 230 μg kg−1 (range found 50-450) of dry weight (d.w.). Under optimized conditions we used this method to determine the compounds in industrial and municipal sewage sludge samples and in sludge from a potable water treatment plant. Methylamine and isobutylamine showed the highest levels in one of the industrial sewage sludge samples (404 and 543 mg kg−1 (d.w.), respectively). To our knowledge, this paper presents for the first time the determination of ten primary amines in sewage sludge samples using PHWE.  相似文献   

9.
The objective of this paper is to provide information about solid phase extraction (SPE) as an alternative to liquid-liquid extraction of amines from several matrices. Different sorbents ranging from non-polar phases, such as C18 silica to more polar such as cyanopropylsilica (CN) have been tested for analysis of aliphatic amines as monoamines, diamines and polyamines. Phenylalkylamines such as amphetamine or methamphetamine and heterocyclic amines such as histamine or cephalosporins (which also contain a carboxylic group), have also been studied. The different steps involved in the extraction procedure have been tested (conditioning, retention, pre-concentration, washing and elution) in order to obtain extracts free of interferences and enough sensitivity. C18 silica (100 mg) was selected as optimal phase with recoveries nearly of 100%. The elution of more polar amines was performed in acidic conditions while less polar amines required organic solvents. Cephalosporin retention was performed in acid condition by using disk cartridges EM C18, which gave better selectivity. The optimised clean-up procedures have been discussed to the quantification of the corresponding amines in real samples (urine, water and beer). The accuracy and precision were outlined.  相似文献   

10.
The present study describes a new environmentally friendly sample pretreatment system based on solid-phase microextraction (SPME) for the sensitive determination of polyphenols. A derivatization process was necessary to convert the polar non-volatile compounds into volatile derivatives. Direct immersion (DI) SPME was used for the adsorption of polyphenols, and then the fiber was placed in the headspace of the derivatizing reagent, bis(trimethylsilyl)trifluoroacetamide (BSTFA). The separation was carried out by coupling gas chromatography with mass spectrometry in the selected ion monitoring mode, after silylation. Optimal extraction conditions were 25 °C for 10 min under continuous stirring using DI and a polyacrylate fiber. After extraction, the fiber was inserted into the headspace of BSTFA (10 μL) and the polyphenols were derivatized for 15 min at 50 °C. Desorption was carried out at 280 °C for 5 min. The method allowed the determination of both isomers cis- and trans-resveratrol, piceatannol, catechin and epicatechin in wine and grapes, and it was validated for linearity, detection and quantitation limits, selectivity, accuracy and precision. Detection limits ranged from 0.05 to 0.9 ng mL−1 at a signal-to-noise ratio of 3, depending on the compound. Recoveries obtained for spiked samples were satisfactory for all compounds.  相似文献   

11.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

12.
A method is presented for the determination of aromatic amines in aqueous extracts of polyurethane (PUR) foam. The method is based on the extraction of PUR foam using aqueous acetic acid (0.1%, w/v) followed by determination of extracted aromatic amines using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) with positive electrospray ionisation. The injections of volumes up to 5 μL of aqueous solutions were made possible by on-column focusing with partially filled loop injections. The fragmentation patterns for 2,4- and 2,6-toluene diamine (TDA) and 4,4′-methylene dianiline (MDA) were clarified by performing a hydrogen-deuterium exchange study.TDA and MDA were determined using trideuterated 2,4- and 2,6-TDA and dideuterated 4,4′-MDA as internal standards. Linear calibration graphs were obtained over the range 0.025-0.5 μg mL−1 with correlation coefficients >0.996 and the instrumental detection limit for each compound was <50 fmol. The stability of the amines was influenced by the matrix, so their concentrations decreased over time.Agreement was observed between the results of analyses of PUR foam extracts by HILIC-MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) liquid chromatography-mass spectrometry (LC-MS/MS).TDA was observed to be unstable in extracts of foam but not in pure solutions.  相似文献   

13.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

14.
The determination of a group of eighteen pollutants in waters, including polycyclic aromatic hydrocarbons and substituted phenols, is conducted in direct-immersion solid-phase microextraction (SPME) using the polymeric ionic liquid (PIL) poly(1-vinyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide as a novel coating material. The performance of the PIL fiber coating in the developed IL-SPME-gas chromatography (GC)–mass spectrometry (MS) method is characterized by average relative recoveries of 92.5% for deionized waters and 90.8% for well waters, average precision values (as relative standard deviations, RSD%) of 11% for deionized waters and 12% for well waters, using a spiked level of 5 ng mL−1. The detection limits oscillate from 0.005 ng mL−1 for fluoranthene to 4.4 ng mL−1 for 4-chloro-3-methylphenol, when using an extraction time of 60 min with 20 mL of aqueous sample. The extraction capabilities of the PIL fiber have been compared with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, PDMS 100 μm and polyacrylate (PA) 85 μm. The PIL fiber is superior to the PDMS 30 μm for all analytes studied. A qualitative study was also carried out to compare among the nature of the coating materials by normalizing the coating thickness. The PIL material was shown to be more efficient than the PDMS material for all analytes studied. The PIL coating was also adequate for nonpolar analytes whereas the PA material was more sensitive for polar compounds.  相似文献   

15.
Ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5–500 μg mL−1 (octopamine and tyramine) and 0.025–2.5 μg mL−1 (phenethylamine). The relative standard deviations were 2.4–3.2% (n = 6) and the limits of detection were in the range of 0.02–5 ng mL−1. The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42–104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid–liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.  相似文献   

16.
A solid-phase microextraction (SPME) method for the determination of five amphetamine type stimulants (ATSs) in water and urine samples is presented. Analytes were simultaneously derivatized with iso-butyl chloroformate (iBCF) in the aqueous sample while being extracted, improving in this way the extractability of ATSs and permitting their determination by gas chromatography–mass spectrometry (GC–MS). The SPME procedure was carefully optimized in order to achieve adequate limits of detection (LODs) for environmental concentrations. Hence, different operational parameters were considered: type of SPME coating, ionic strength, basic catalyzer and derivatizing agent amount, extraction time and temperature. The final SPME procedure consists into the extraction of 100 mL of sample containing 2 g of dipotassium monohydrogen phosphate trihydrate and 100 μL of iBCF (1:1 in acetonitrile), for 40 min at 60 °C with a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. Under these conditions, LODs in wastewater ranged from 0.4 to 2 ng L−1, relative recoveries in the 84–114% range and relative standard deviations (RSD) lower than 15% were obtained. The application of the method to wastewater and river water samples showed the ecstasy ATS, 3,4-methylenedioxymethamphetamine (MDMA), as the most frequently detected, followed by methamphetamine, in concentrations around 20 ng L−1. Finally, the method was downscaled and also validated with urine samples, proving its good performance with this matrix too: RSD < 11%, recoveries in the 98–110% range and LODs lower than 0.1 μg L−1.  相似文献   

17.
In this paper, we proposed an approach using a multi-walled carbon nanotubes (MWCNTs)/Nafion composite coating as a working electrode for the electrochemically enhanced solid-phase microextraction (EE-SPME) of charged compounds. Suitable negative and positive potentials were applied to enhance the extraction of cationic (protonated amines) and anionic compounds (deprotonated carboxylic acids) in aqueous solutions, respectively. Compared to the direct SPME mode (DI-SPME) (without applying potential), the EE-SPME presented more effective and selective extraction of charged analytes primarily via electrophoresis and complementary charge interaction. The experimental parameters relating to extraction efficiency of the EE-SPME such as applied potentials, extraction time, ionic strength, sample pH were studied and optimized. The linear dynamic range of developed EE-SPME-GC for the selected amines spanned three orders of magnitude (0.005–1 μg mL−1) with R2 larger than 0.9933, and the limits of detection were in the range of 0.048–0.070 ng mL−1. All of these characteristics demonstrate that the proposed MWCNTs/Nafion EE-SPME is an efficient, flexible and versatile sampling and extraction tool which is ideally suited for use with chromatographic methods.  相似文献   

18.
A new solid phase microextraction (SPME) fiber based on high-temperature silicone glue coated on a stainless steel wire is presented. The fiber coating can be prepared easily in a few minutes, it is mechanically stable and exhibits relatively high thermal stability (up to 260 °C). The extraction properties of the fiber to benzene, toluene, ethylbenzene, and xylenes (BTEX) were examined using both direct and headspace SPME modes coupled to gas chromatography-flame ionization detection. The effects of the extraction and desorption parameters including extraction and desorption time, sampling and desorption temperature, and ionic strength on the extraction/desorption efficiency have been studied. For both headspace and direct SPME the calibration graphs were linear in the concentration range from 0.5 μg L−1 to 10 mg L−1 (R2 > 0.996) and detection limits ranged from 0.07 to 0.24 μg L−1. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.8 and 21.5%, respectively. Finally, headspace SPME was applied to determine BTEX in petrol station waste waters with spiked recoveries in the range of 89.7-105.2%.  相似文献   

19.
A perfluorooctanesulfonic acid-doped polyaniline (PFOS-doped PANI) directly electrodeposited onto stainless steel was employed as a solid-phase microextraction (SPME) fiber. Commercial SPME fibers were chosen to compare with the PFOS-doped PANI through extraction of phenols and polybrominated diphenyl ethers (PBDEs). Excellent extraction efficiency of this fiber was demonstrated, indicating its good affinity for both non-/less polar and polar compounds. To achieve maximum response, influential parameters affecting the extraction efficiency were optimized by full-factorial experimental designs. Under the optimized conditions, the analytical features for PBDEs were estimated. The calibration curve was linear approximately 3 orders of magnitude for the target analytes, with linear correlation coefficients greater than 0.99. Detection limits in the range of 0.1–0.2 ng/L were obtained. Repeatability (n = 5) was in the range of 4.5–8.3%. The results suggest that the proposed fiber can be applied for the determination of trace PBDEs in environmental water and expected to be extended to other analytes and matrices.  相似文献   

20.
A method for the determination of methylamine (MA) in aqueous matrices is reported which uses solid-phase microextraction (SPME) for enrichment and derivatization of the analyte, and high performance liquid chromatography (HPLC). The fluorogenic reagent 9-fluorenylmethyl chloroformate (FMOC) has been used for derivatization. The SPME fibres were successively immersed in the samples and in the derivatization solutions to extract MA and FMOC, respectively. After a defined time of reaction, the derivatized analyte was desorbed into the chromatographic system, and chromatographed in a LiChrosphere 100 RP18, i.d., 5 μm, column under gradient elution. In order to improve the MA-FMOC peak profile, a precolumn ( i.d., packed with Hypersil C18 phase, 30 μm) was connected on-line to the analytical column by means of a switching valve. The experimental conditions (including fibre coating, times of adsorption, reaction and desorption, and concentration of reagent) have been optimised, and the results have been compared with those achieved by using a method previously validated for aliphatic amines in which extraction and derivatization were carried into C18 solid-phase extraction (SPE) cartridges. Although less sensitive, the SPME based method allowed the quantification of MA over the range 2.5-10.0 μg/ml with linearity, reproducibility and accuracy comparable to that of the SPE based method, the limit of detection being 0.75 μg/ml. The main advantages of the proposed SPME procedure are: sample handling involved in the extraction and derivatization steps was considerably reduced, it was free organic solvent and non-destructive. Moreover, the proposed conditions allowed the selective determination of MA in the presence of other primary and secondary short-chain aliphatic amines. The utility of the proposed procedure for the quantification of MA in different types of waters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号