首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance fluorosensor for pH measurements between 6 and 9   总被引:1,自引:0,他引:1  
Aron Hakonen  Stefan Hulth 《Talanta》2010,80(5):1964-321
This study presents a high-performance ratiometric pH optode based on the fluorophore 6,8-dihydroxypyrene-1,3-disulfonic acid (DHPDS). The two pH-sensitive terminal hydroxy groups of DHPDS facilitated dual excitation/dual emission (F1: λ1,ex = 420 nm, λ1,em = 462 nm; F2: λ2,ex = 470 nm, λ2,em = 498 nm) properties for ratiometric (RF1,F2 = F1/F2) normalization of sensor signal. The sensor demonstrated an exponentially decreasing ratiometric response with increasing pH, with a linear correlation (R2 = 0.9936) between 10log(RF1,F2) and pH within the pH interval 6-9. Precision determined as the IUPAC pooled standard deviation for the pH values 6.00, 7.01 and 9.01, was 0.0057 pH units for the fluorosensor and 0.0054 for a commercially available pH electrode used for comparison. Between the end-points of calibration at pH 7.01, the precision of the sensor was 0.0037 pH units. Effects from changes in ionic strength (Itot, 10-700 mM) were more pronounced for the electrode, with a linear (R2 = 0.9976) increase in response (δE/δpH) with increasing Itot. The DHPDS-based fluorosensor, however, retained sensitivity (δ10log(RF1,F2)/δpH = 0.8024 ± 0.0145), though with an overall increase in ratiometric signal with increasing Itot. The preserved sensitivity despite changes in ionic strength was possibly a consequence from the dual photo-acidic properties of DHPDS. Analytical characteristics of immobilized DHPDS therefore not only facilitated high-performance measurements over a wide pH range, but also opened for straightforward simultaneous measurements of pH and ionic strength.  相似文献   

2.
A new heterodinuclear Fe(III)Zn(II) complex which mimics the active site of the hydrolytic enzyme red kidney bean purple acid phosphatase was synthesized and characterized by IR, CHN and X-ray crystallographic analyses. This complex, [FeIIIZnII(μ-OH)bpbpmp-CH3](ClO4)2, containing the ligand (H2bpbpmp-CH3 = {2-[bis(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxy-5-methylbenzyl) (2-pyridyl-methyl) aminomethyl]-4-methyl-phenol}) was employed in the construction of a biomimetic sensor and used in the determination of rosmarinic acid in plant extract samples. The response parameters and optimization of the biomimetic sensor design were evaluated. The best performance of this sensor was obtained for 75:15:10% (w/w/w) of the graphite powder:nujol:Fe(III)Zn(II) complex, 0.1 mol L−1 phosphate buffer solution (pH 7.5), 1.19 × 10−4 mol L−1 hydrogen peroxide with frequency, pulse amplitude, and scan increment at 30 Hz, 100 mV, and 0.6 mV, respectively. The rosmarinic acid concentration was linear in the range of 2.98 × 10−5 to 3.83 × 10−4 mol L−1 (r = 0.9991) with a detection limit of 2.30 × 10−6 mol L−1. This biomimetic sensor demonstrated long-term stability (300 days; 900 determinations) and reproducibility, with a relative standard deviation of 12.0%. The recovery study of rosmarinic acid in plant extract samples gave values from 90.3 to 98.3% and the concentrations determined showed agreement when compared with those obtained using capillary electrophoresis at the 95% confidence level.  相似文献   

3.
Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L−1 with a detection limit (evaluated as 3σ) of 0.024 mg L−1 with a R.S.D. 1.5% for 10 mg L−1 H2O2 under optimized flow rate of 0.4 mL min−1 in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L−1 with a R.S.D. 2.4% for 100 mg L−1 glucose, detection limit 0.02 mg L−1 (3σ) and retained its original activity after 3 weeks when stored at 6 °C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min−1 in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L−1 with a maximum R.S.D. of 5.1%. Applications in food analysis were also examined.  相似文献   

4.
Synthetic Na-magadiite sample was used for organofunctionalization process with N-propyldiethylenetrimethoxysilane and bis[3-(triethoxysilyl)propyl]tetrasulfide, after expanding the interlayer distance with polar organic solvents such as dimethylsulfoxide (DMSO). The resulted materials were submitted to process of adsorption with arsenic solution at pH 2.0 and 298±1 K. The adsorption isotherms were adjusted using a modified Langmuir equation with regression nonlinear; the net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation. The adsorption process was exothermic (ΔintH=−4.15-5.98 kJ mol−1) accompanied by increase in entropy (ΔintS=41.32-62.20 J k−1 mol−1) and Gibbs energy (ΔintG=−22.44−24.56 kJ mol−1). The favorable values corroborate with the arsenic (III)/basic reactive centers interaction at the solid-liquid interface in the spontaneous process.  相似文献   

5.
The three different ligands (Q2 to Q4) based on 2-amino-1,4-naphthoquinone (Q1), have been synthesized and explored as neutral ionophores for preparing polyvinyl chloride-based membrane sensors selective to indium (III). The addition of potassium tetrakis(4-chlorophenyl) borate and various plasticizers, viz., o-NPOE, DBP, DBBP, DOP and CN has been found to substantially improve the performance of the sensors. The best performance was obtained with the sensor no. 16 having membrane of ligand (Q2) with composition (%, w/w) ionophore Q2 (3.0%):PVC (30.0%):o-NPOE (63.0%):KTpClPB (4.0%). This sensor exhibits Nernstian response with slope 19.8 mV/decade of activity in the concentration range 2.5 × 10−7 to 1.0 × 10−2 M indium (III), performs satisfactorily over wide pH range of (2.5-7.5) with a fast response time (10 s). The sensor was also found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of acetonitrile, ethanol and methanol. The proposed sensor can be used over a period of 3.5 months without significant drift in potentials. The quantitative application of sensor was also evaluated by comparative analysis of artificially made sea water with AAS.  相似文献   

6.
Mrak T  Slejkovec Z  Jeran Z 《Talanta》2006,69(1):251-258
Different extraction procedures were applied to improve the extraction efficiency of arsenic compounds from lichens. Two lichen species were chosen from an arsenic-contaminated environment: epiphytic Hypogymnia physodes (L.) Nyl. and terricolous Cladonia rei Schaer. Samples were extracted with water at temperatures of 20, 60 and 90 °C, using mixtures of methanol/water (9:1, 1:1 and 1:9), Tris buffer and acetone and the extracts speciated. Water and Tris buffer showed the best extraction efficiency of all extractants used; however, the extraction efficiency was still less than 23%. Since a major fraction of arsenic appeared to be associated with trapped soil particles, a sequential extraction procedure originally designed for soils (extraction steps: (1) 0.05 mol l−1 (NH4)2SO4; (2) 0.05 mol l−1 (NH)4H2PO4; (3) 0.2 mol l−1 NH4-oxalate buffer, pH 3.25; (4) mixture of 0.2 mol l−1 NH4-oxalate buffer and 0.1 mol l−1 ascorbic acid, pH 3.25; (5) 0.5 mol l−1 KOH) was applied and found to remove 45% of the total arsenic from H. physodes and 83% from C. rei. The lipid-soluble fraction of arsenic was estimated by k0-INAA analysis of diethylether extracts and was found to be negligible. An HPLC-UV-HGAFS system was used to determine the arsenic compounds extracted. In both lichen species, arsenous acid, arsenic acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, trimethylarsine oxide and glycerol-ribose were detected. In addition, phosphate-ribose was found in H. physodes.  相似文献   

7.
Oh Seok Kwon  O. Young Kweon 《Talanta》2010,82(4):1338-1526
Poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) flexible membrane was successfully fabricated by vapor deposition polymerization (VDP) mediated electrospinning for ammonia gas detection. PVA nanofibers (NFs) were electrospun as a core part and polyvinyl alcohol (PVA)/PEDOT coaxial nanocables (NCs) were prepared by VDP method via EDOT monomer adsorption onto the electrospun PVA NFs as templates. To obtain the PEDOT NTs membrane, the PVA NFs were removed from PVA/PEDOT coaxial NCs with distilled water. PVA/PEDOT coaxial NCs and PEDOT NTs had the conductivities of 71 and 61 S cm−1 and were applied as a transducer for ammonia gas detection in the range of 1-100 parts per million (ppm) of NH3 gas. They exhibited the minimum detectable level of ca. 5 parts per million (ppm) and fast response time (less than 1 s) towards ammonia gas. In a recovery time, the PEDOT NTs membrane sensor was ca. 30 s and shorter compared to that of the membrane sensor based on the PVA/PEDOT NCs (ca. 50 s). In addition, sensor performance of PEDOT NTs membrane was also undertaken as a function of membrane thickness. Thick membrane sensor (30 μm) had the enhanced sensitivity and the sensitivity on the membrane thickness was in the order of 30 μm > 20 μm > 10 μm at 60 ppm of NH3 gas.  相似文献   

8.
Boyacı E  Cağır A  Shahwan T  Eroğlu AE 《Talanta》2011,85(3):1517-1525
A bifunctional sorbent, (NH2 + SH)silica, containing both amine and mercapto functionalities was prepared by modification of silica gel with 3-(triethoxysilyl)propylamine and (3-mercaptopropyl)trimethoxysilane. In addition to the bifunctional sorbent, silica gel was modified individually with the functional mercapto- and amino-silanes, and the mono-functional sorbents, namely (SH)silica and (NH2)silica, were also mechanically mixed ((NH2)silica + (SH)silica) for the sake of comparison of sorption performances. It has been demonstrated that (SH)silica shows quantitative sorption only to As(III) at two pH values, 1.0 and 9.0, while (NH2)silica displays selectivity only towards As(V) at pH 3.0. On the other hand, the bifunctional (NH2 + SH)silica possesses the efficient features of the two mono-functionalized sorbents; for example, it retains As(III) at a wider pH range, from 1.0 to at least 9.0 with the exception at pH 2.0, and it also shows quantitative sorption to As(V) at pH 3.0. This property gives the bifunctional (NH2 + SH)silica a better flexibility in terms of sorption performance as a function of solution pH. The mechanically mixed (NH2)silica + (SH)silica exhibits a similar but less efficient sorption behavior compared to the bifunctional sorbent. Desorption of both As(III) and As(V) species can be realized using 0.5 M NaOH. The validity of the proposed method was checked through the analysis of a standard reference material and a good correlation was obtained between the certified (26.67 μg L−1) and determined (27.53 ± 0.37 μg L−1) values. Spike recovery tests realized with ultrapure water (93.0 ± 2.3%) and drinking water (86.9 ± 1.2%) also confirmed the applicability of the method.  相似文献   

9.
A new method involving headspace single-drop microextraction (SDME) and capillary electrophoresis (CE) is developed for the preconcentration and determination of ammonia (as dissolved NH3 and ammonium ion). An aqueous microdrop (5 μL) containing 1 mmol/L H3PO4 and 0.5 mmol/L KH2PO4 (as internal standard) was used as the acceptor phase. Common experimental parameters (sample and acceptor phase pH, extraction temperature, extraction time) affecting the extraction efficiency were investigated. Proposed SDME-CE method provided about 14-fold enrichment in about 20 min. The calibration curve was linear for concentrations of NH4+ in the range from 5 to 100 μmol/L (R2 = 0.996). The LOD (S / N = 3) was estimated to be 1.5 μmol/L of NH4+. Such detection sensitivity is high enough for ammonia determination in common environmental and biological samples. Finally, headspace SDME was applied to determine ammonia in human blood, seawater and milk samples with spiked recoveries in the range of 96-107%.  相似文献   

10.
Jain AK  Gupta VK  Raisoni JR 《Talanta》2006,69(4):1007-1012
Polyvinyl chloride (PVC) based membranes using macrocyclic dithioxamide receptor (I) derived from isophthaloyl dichloride and dithioxamide have been prepared and explored as HPO42−-selective sensors. Effect of various plasticizers viz., bis(2-ethylhexyl) sebacate (DOS), dibutylphosphate (DBP), tri-n-butylphosphate (TBP), O-nitrophenyl octyl ether (NPOE), tris(2-ethylhexyl)phosphate (TEHP) and a cation excluder, tridodecylmethylammonium chloride (TDDMACl) was studied in detail and improved performance was observed at several instances. Optimum performance was observed with the membrane having (I)-PVC-TDDMACl-NPOE in the ratio 2:33:1.5:63.5 (w/w). The sensor works satisfactorily in the concentration range 1.7 × 10−6 to 1.0 × 10−2 M (detection limit 0.2 ppm) with Nernstian compliance (29.6 mV/decade of activity) at pH 8.0 with a fast response time of about 8 s. The potentiometric selectivity coefficient values as determined by the matched potential method (MPM) and the fixed interference method (FIM) indicate selective response for HPO42− in presence of interfering ions. The sensor exhibits adequate shelf life (∼2 months) with good reproducibility (S.D. ± 0.4 mV). The sensor was also used successfully in the potentiometric titration of HPO42− with Ba2+.  相似文献   

11.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

12.
This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu2+ by employing amino-functionalized mesoporous silica (NH2-MCM-41) as enhanced sensing platform. NH2-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH2-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu2+ than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu2+ concentration in the range from 5 to 1000 ng L−1 with a detection limit of 0.9 ng L−1 (S/N = 3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed sensor was applied for determining Cu2+ in real samples and the accuracy of the results were comparable to those obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) method.  相似文献   

13.
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson’s disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)5RuIIIORuIV(NH3)4ORuIII(NH3)5]6+ (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2×10−4 and 1.0×10−2 mol l−1 (r=0.9988) with a detection limit of 8.5×10−5 mol l−1. The variation coefficient for a 1.0×10−3 mol l−1 L-dopa (n=10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa.  相似文献   

14.
Chen Y  Su YH  Zheng LM  Xia XH 《Talanta》2010,83(1):145-148
The electrochemistry of a macrocyclic metal complex Fe(notpH3) [notpH6 = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)] reveals that the protonation/deprotonation of the non-coordinated P-OH groups in Fe(notpH3) affects its formal potential value (E0′) considerably. Plotting E0′ as function of solution pH gives a straight line with a slope of −585 mV pH−1 in the pH range of 3.4-4.0, which is about ten times larger than the theoretical value of −58 mV pH−1 for a reversible proton-coupled single-electron transfer at 20 °C. A sensitive pH responsive electrochemical switch sensor is thus developed based on Fe(notpH3) which shows an “on/off” switching at pH ∼ 4.0.  相似文献   

15.
A simple fluorescent sensor has been developed for the ratiometric recognition of Mg2+ in semi-aqueous solution at pH 7.0. The sensor, a Schiff base, undergoes Excited State Intramolecular Proton Transfer (ESIPT) to generate a keto tautomer with proficient Mg2+ binding capability. The sensor displays good selectivity over other metal ions including alkali/alkali earth ions and can measure Mg2+ ion concentration between 2.0 and 30.0 μM. The binding stoichiometry was established as 2:1 (host:guest) with an association constant (K21) of (1.4 ± 0.1) × 104 M−2. The sensor could potentially be used to detect conditions such as hypermagnesaemia.  相似文献   

16.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

17.
The potential of near infrared (NIR) spectroscopy in characterization of organically modified clay minerals is introduced. Selected organo-clays, possibly perspective fillers in clay polymer nanocomposites, were prepared from Na-montmorillonite and different surfactants containing octylammonium chain(s), hexadecylammonium chain(s) or a benzene ring with or without a reactive double bond. Based on the stretching (ν) and bending (δ) vibrations observed in the middle IR (MIR) region, the first overtone (2νXH) and combination (ν + δ)XH modes of XH groups (X = O, C, N) are identified. The effect of larger alkylammonium cations on the vibrations of Si-O and OH bonds in montmorillonite layers is observed. The changes in the intensity of the (ν + δ)H2O band near 5250 cm−1 allows for comparison of the amount of water adsorbed on the montmorillonite surface. The water content decreases with the size of the organic cation reflecting increasing hydrophobicity of the montmorillonite surface. The NIR region shows the 2νCH3 and 2νCH2 bands in the 5900-5500 cm−1 region, an upward shift is observed for the complex band due to 2νCH(Ar) of aromatic benzene ring. The NIR spectra are extremely useful in identification of NH2+, NH+ and vinyl groups, which are difficult to recognize in the MIR spectra of organo-clays due to overlapping with other absorption bands. The intense bands corresponding to overtones and combination vibrations of NH3+ and NH2+ groups are found in the 6600-6050 cm−1 and 5000-4600 cm−1 regions, the (ν + δ)NH+ is unambiguously identified near 4750 cm−1. The characteristic band assigned to 2νCH2 in H2CC is detected near 6130 cm−1.  相似文献   

18.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

19.
Palladium sensors based on two neutral ionophores, N,N′-bis(acetylacetone) cyclohexanediamine (L1) and N,N′-bis(o-hydroxyacetophenone)-1,2-cyclohexanediamine (L2) for quantification of palladium ions are described. Effect of various plasticizers (o-NPOE, DBP, DEP, DOP, TBP, and CN) and anion excluder, sodium tetra phenyl borate (NaTPB) has been studied. The best performance is obtained with a membrane composition of PVC:o-NPOE:ionophore (L1):NaTPB of 150:300:5:5 (%, w/w). The sensor exhibits significantly enhanced selectivity towards palladium ion over the concentration range 1.0 × 10−8 to 1.0 × 10−1 M with a lower detection limit of 4.0 × 10−9 M and a Nernstian compliance (29.1 ± 0.3 mV decade−1 of activity) within pH range 2.0-6.0 and fast response time of 10 s. Influence of the membrane composition and possible interfering ions has also been investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability of the sensor are demonstrated. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 4 months. Selectivity coefficients determined with fixed interference method (FIM) indicate high selectivity for palladium. The proposed electrode shows fairly good discrimination of palladium from other cations. The application of prepared sensor has been demonstrated in determination of palladium ions in spiked water sample.  相似文献   

20.
Chang G  Tatsu Y  Goto T  Imaishi H  Morigaki K 《Talanta》2010,83(1):61-65
Optical biosensor arrays for rapidly determining the glucose concentrations in a large number of beverage and blood samples were developed by immobilizing glucose oxidase (GOD) on oxygen sensor layer. Glucose oxidase was first encapsulated in silica based gels through sol-gel approach and then immobilized on 96-well microarrays integrated with oxygen sensing film at the bottom. The oxygen sensing film was made of an organically modified silica film (ORMOSIL) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium dichloride (Ru(dpp)3Cl2). The oxidation reaction of glucose by glucose oxidase could be monitored through fluorescence intensity enhancement due to the oxygen consumption in the reaction. The luminescence changing rate evaluated by the dynamic transient method (DTM) was correlated with the glucose concentration with the wide linear range from 0.1 to 5.0 mM (Y = 13.28X − 0.128, R = 0.9968) and low detection limit (0.06 mM). The effects of pH and coexisting ions were systemically studied. The results showed that the optical biosensor arrays worked under a wide range of pH value, and normal interfering species such as Na+, K+, Cl, PO43−, and ascorbic acid did not cause apparent interference on the measurement. The activity of glucose oxidase was mostly retained even after 2-month storage, indicating their long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号