首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The combination of the near infrared (NIR) and Fourier-transform infrared (FTIR) absorbance spectra (1100-2500 nm and 4000-600 cm−1) of 100 cocoa powder samples was used to build calibration models for the determination of the content of fat, nitrogen, and moisture. The samples that comprised the dataset had an average composition of 13.51% of fat, 3.77% nitrogen, and 3.98% moisture. The fat content ranged from 2.42 to 22.00%, the nitrogen from 0.88 to 4.48%, and moisture from 1.60 to 7.80%. For NIR, the relative root mean square error of cross-validation (RMSECV) was 7.0% (R2 = 0.96) for fat, 1.7% (R2 = 0.98) for nitrogen, and 5.2% (R2 = 0.94) for moisture. For FTIR, the relative RMSECV was 10.4% (R2 = 0.94) for fat and 3.9% (R2 = 0.95) for nitrogen. However, for moisture, it was not possible to build a calibration model with suitable predictability. The combination of the NIR and FTIR domains (data fusion) by outer product analysis PLS1 allowed to predict these parameters and to characterise frequencies in one domain based on the information of the other domain. This work allows to conclude that the second derivative of NIR is the recommended procedure to quantify fat, nitrogen, and moisture content in cocoa powders by infrared spectroscopy.  相似文献   

2.
Enthalpies for the two proton ionizations of glycine, N,N-bis(2-hyroxyethyl)glycine (“bicine”) and N-tris(hydroxymethyl)methylglycine (“tricine”) were obtained in water-methanol mixtures with methanol mole fraction (Xm) from 0 to 0.360. With increasing methanol the ionization enthalpy for the first proton (ΔH1) of glycine increased from 4.4 to 9.4 kJ mol−1 with a minimum of 4.1 kJ mol−1 at Xm = 0.059. The ionization enthalpy of the second proton (ΔH2) for glycine decreased from 46.3 to 38.1 kJ mol−1. ΔH1 of bicine increased from 3.5 to 7.6 kJ mol−1 at Xm = 0.273 before dropping to 4.1 kJ mol−1 at Xm = 0.360. ΔH2 of bicine increased from 24.9 to 29.4 kJ mol−1. For tricine, ΔH1 increased from 6.7 to 9.8 kJ mol−1 at Xm = 0.194 then dropped to 7.4 kJ mol−1 at Xm = 0.360. ΔH2 for tricine first dropped from 30.8 to 28.5 kJ mol−1 at Xm = 0.059 before increasing to 33.3 kJ mol−1 at Xm = 0.273. The solvent composition was selected so as to include the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of solvent-solvent and solvent-solute interactions.  相似文献   

3.
The extremely slow diffusion of the molecule n-pentane caused by the hopping from cage-to-cage in zeolite ZK5 has been investigated by transition state theory (TST). Such slow diffusion cannot be accessed by usual molecular dynamics simulation techniques. The calculation of the partition function ratio needed for TST was enabled by a recently developed method, the so-called high-temperature configuration-space exploration (HTCE). Dynamical corrections for recrossing events have also been taken into account. The obtained intra-zeolite self-diffusion constant between 247 and 317 K of 10−16–10−15 m2 s−1 falls in the range of 10−18–10−15 m2 s−1 observed experimentally. The calculated energetic barrier between two neighboring cages of 29 kJ mol−1 is in good agreement with that of 28 ± 5 kJ mol−1 obtained from NMR measurement.  相似文献   

4.
Enthalpies for the two proton ionizations of the biochemical buffers N-[2-hydroxyethyl]piperazine-N′-[2-ethane sulfonic acid] (HEPES) and N-[2-hydroxyethyl]piperazine-N′-[2-hydroxypropane sulfonic acid] (HEPPSO) were obtained in water-methanol mixtures with methanol mole fraction (Xm) from 0 to 0.360. With increasing methanol, the ionization enthalpy for the first proton (ΔH1) of HEPES increased steadily from 8.4 to 15.3 kJ mol−1 whereas that for HEPPSO rose to a maximum of 21.0 kJ mol−1 at Xm = 0.123 before dropping to 18.4 kJ mol−1 at Xm = 0.360. The ionization enthalpy for the second proton (ΔH2) of HEPES varied from 20.8 kJ mol−1 in water to 13.6 kJ mol−1 at Xm = 0.360 with a maximum of 24.8 kJ mol−1 at Xm = 0.194. For HEPPSO, ΔH2 increased steadily from 23.4 to 29.2 kJ mol−1. The solvent composition was selected so as to include the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of solvent-solvent and solvent-solute interactions.  相似文献   

5.
A chemometric study on the prediction of the main nutritional aspects of milk has been carried out by using fourier transform infrared spectroscopy (FTIR) attenuated total reflectance (ATR) measurements of commercially available milk samples of different types. Whole, semi and skimmed milks, enriched or not with calcium, vitamins or modified by alteration of lipid or sugar composition were considered. After evaluating different strategies for data acquisition and ATR cleaning between samples, hierarchical cluster analysis (HCA) was carried out for classification of samples in order to choose the calibration set. The prediction capabilities of partial least squares (PLS) data treatment were evaluated in order to obtain information about total fat, total protein, total carbohydrates (CH), calories and calcium. On using the mean square error of cross-validation and prediction as control variables, a critical evaluation were made about the calibration set to be used, the spectral range to be considered and the data treatment (PLS-1 or PLS-2) to be performed. By selecting a calibration set of 33 samples the properties of 48 samples were predicted with relative precision of triplicates of 0.062, 0.040 and 0.039% w/v for total fat, protein and carbohydrates, and 0.66 kcal/100 ml for calories, and 2.1 mg of Ca/100 ml. The mean difference (dxy) between predicted and actual values and standard deviation of mean differences (sxy), were of 0.06 (0.38), 0.03 (0.18) and −0.15 (0.41), being sxy values between brackets, for total fat, proteins and carbohydrates, 0.06 (3.8) kcal/100 ml for calories and −4.5 (9) mg/100 ml for calcium.The sensitivity and selectivity of the methodology developed were evaluated on terms of the net analyte signal. Selectivity factors ranging from 2 to 7.6% have been calculated for the five parameters considered.  相似文献   

6.
The standard molar heat capacity C°p,m of adenine(cr) has been measured using adiabatic calorimetry over the range 6<(T/K)<310 and the results used to derive thermodynamic functions for adenine(cr) at smoothed temperatures. At T=298.15 K, C°p,m=(142.67±0.29) J · K−1 · mol−1 and the third law entropy S°m=(145.62±0.29) J · K−1 · mol−1. The standard molar Gibbs free energy of formation ΔfG°m at T=298.15 K for crystalline adenine was calculated, using the standard molar enthalpy of formation for the compound and entropies of the elements from the literature, and found to be ΔfG°m=(301.4±1.0) kJ · mol−1. The results were combined with solution calorimetry and solubility measurements from the literature to yield revised values for the standard molar thermodynamic properties of aqueous adenine at T=298.15 K: ΔfG°m=(313.4±1.0) kJ · mol−1, ΔfH°m=(129.5±1.4) kJ · mol−1, and Sm°=(217.68±0.44) J · K−1 · mol−1.  相似文献   

7.
The thermal stability of starch cross-linked with tetraethylene glycol diacrylate was studied under nitrogen atmosphere by thermogravimetry (TG) and infrared spectroscopy (FTIR). The cross-linking reaction was confirmed by the increase in intensity of the absorption band at ca. 3330 cm−1 indicating the reinforcement of hydrogen bonds and the appearance of a new band at 1726 cm−1 associated with the carbonyl group of the cross-linking agent. After cross-linking the solubility of starch in water decreased to the range 9%-16%. The thermogravimetric curves of pure and cross-linked starches showed an initial stage of degradation (up to ca. 150 °C) associated with the loss of water. The main stage of degradation occurred in the range 250-400 °C corresponding to ca. 60%-70% mass loss. The activation energy (E) for the degradation process increased from 145 kJ mol−1 (pure starch) to 195 kJ mol−1 and 198 kJ mol−1 for starch treated for 60 min by UV (30 °C) and at 90 °C, suggesting high stability after cross-linking. A higher value (240 kJ mol−1) was obtained for starch treated by UV for 120 min. The main volatile products determined by FTIR which correspond to hydrocarbons and carbonyl groups are apparently associated with the scission of weak bonds in the chain (probably branched groups) and the scission of stronger bonds (glycosidic linkages), respectively.  相似文献   

8.
A selective method has been developed for the extraction chromatographic trace level separation of Cu(II) with Versatic 10 (liquid cation exchanger) coated on silanised silica gel (SSG-V10). Cu(II) has been extracted from 0.1 M acetate buffer at the range of pH 4.0–5.5. The effects of foreign ions, pH, flow-rate, stripping agents on extraction and elution have been investigated. Exchange capacity of the prepared exchanger at different temperatures with respect to Cu(II) has been determined. The extraction equilibrium constant (Kex) and different standard thermodynamic parameters have also been calculated by temperature variation method. Positive value of ΔH (7.98 kJ mol−1) and ΔS (0.1916 kJ mol−1) and negative value of ΔG (−49.16 kJ mol−1) indicated that the process was endothermic, entropy gaining and spontaneous. Preconcentration factor was optimized at 74.7 ± 0.2 and the desorption constants Kdesorption1(1.4 × 10−2) and Kdesorption2(9.8 × 10−2) were determined. The effect of pH on Rf values in ion exchange paper chromatography has been investigated. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. Cu(II) has been separated from synthetic binary and multi-component mixtures containing various metal ions associated with it in ores and alloy samples. The method effectively permits sequential separation of Cu(II) from synthetic quaternary mixture containing its congeners Bi(III), Sn(II), Hg(II) and Cu(II), Cd(II), Pb(II) of same analytical group. The method was found effective for the selective detection, removal and recovery of Cu(II) from industrial waste and standard alloy samples following its preconcentration on the column. A plausible mechanism for the extraction of Cu(II) has been suggested.  相似文献   

9.
Synthesis and barriers to inversion of a series of highly saddle shaped complexes are reported. The ΔG has decreased by 8 kJ mol−1 at 243 K when the meso phenyl groups are replaced by bulkier 2,6-dichlorophenyl groups, and by 17 kJ mol−1 when one of the peripheral ethyl groups is removed.  相似文献   

10.
A novel plant tissue-based bioelectrode obtained by incorporating sunflower (Helianthus annuus L.) leaves tissue as a source of glycolate oxidase and peroxidase into a ferrocene-mediated carbon paste electrode for the determination of glycolic acid was developed. It was coupled with the flow-injection (FI) system and used as the basis to develop a novel FI amperometric procedure for glycolic acid determination. The flow-injection amperometric measurements were performed by injecting aliquot of glycolic acid solution into the flowing stream of 0.05 mol L−1 of phosphate buffer solution having pH 8.0 with a flow rate of 0.3 mL min−1. The bioelectrode consisted of 20% (w/w) of sunflower leaves tissue and 5% (w/w) of ferrocene at 0.00 V (vs Ag/AgCl). The bioelectrode exhibited a linear response from 1.0 × 10−6 up to 2.0 × 10−3 mol L−1 glycolic acid with a detection limit (S/N = 3) and a quantitation limit (S/N = 10) of 1 × 10−6 and 3.3 × 10−6 mol L−1, respectively. The sampling rate of 12 h−1 and a relative standard deviation of 1.67% (n = 15) were achieved. The bioelectrode response decreased to 70% of the original value within 90 continuous injections. The proposed bioelectrode was satisfactorily applied to glycolic acid determination in human urine samples after appropriate sample pretreatment. Results obtained by the FI method were compared favorably with those obtained by HPLC. It offers advantages, which included rapidity, high activity, limited stability, ease of preparation and low cost.  相似文献   

11.
This paper presents the development of a new, rapid and precise analytical method for submicrogram levels of nitrate (NO3) in environmental samples like soil, dry deposit samples, and coarse and fine aerosol particles. The determination of submicrogram levels of nitrate is based on the selection of a quantitative analytical peak at 1385 cm−1 among the three observed vibrational peaks and preparing calibration curves using different known concentrations of nitrate by diffuse reflectance Fourier transform infra red spectrometric (DRIFTS) technique. Pre-weighed and ground infrared (IR) grade KBr was used as substrate over which remarkably wide range of known concentration of nitrate was sprayed and dried. The dried sample was analyzed by DRIFTS and absorbance was measured. Eight calibration curves for four different concentration ranges of nitrate for absorbance as well as peak area were prepared for samples containing lower and relatively higher values of nitrate. The relative standard deviation (n = 8) for the nitrate concentration ranges, 0.05-40, 0.05-1.5, 1.5-25, 5-40 μg/0.1 g KBr were in the range 1.6-2.3% for the above calibration curves. The limit of detection (LOD) of the method is 0.07 μg g−1 NO3. The F- and t-tests were performed to check the analytical quality assurance test. The noteworthy feature of the reported method is the noninterference of any of the associated cations. The results were compared with that of ion-chromatographic method with high degree of acceptability. The method can be applied in wide concentration ranges. The method is reagent less, nondestructive, very fast, repeatable, and accurate and has high sample throughput value.  相似文献   

12.
Synthetic Na-magadiite sample was used for organofunctionalization process with N-propyldiethylenetrimethoxysilane and bis[3-(triethoxysilyl)propyl]tetrasulfide, after expanding the interlayer distance with polar organic solvents such as dimethylsulfoxide (DMSO). The resulted materials were submitted to process of adsorption with arsenic solution at pH 2.0 and 298±1 K. The adsorption isotherms were adjusted using a modified Langmuir equation with regression nonlinear; the net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation. The adsorption process was exothermic (ΔintH=−4.15-5.98 kJ mol−1) accompanied by increase in entropy (ΔintS=41.32-62.20 J k−1 mol−1) and Gibbs energy (ΔintG=−22.44−24.56 kJ mol−1). The favorable values corroborate with the arsenic (III)/basic reactive centers interaction at the solid-liquid interface in the spontaneous process.  相似文献   

13.
14.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

15.
Thermal behavior, relative stability, and enthalpy of formation of α (pink phase), β (blue phase), and red NaCoPO4 are studied by differential scanning calorimetry, X-ray diffraction, and high-temperature oxide melt drop solution calorimetry. Red NaCoPO4 with cobalt in trigonal bipyramidal coordination is metastable, irreversibly changing to α NaCoPO4 at 827 K with an enthalpy of phase transition of −17.4±6.9 kJ mol−1. α NaCoPO4 with cobalt in octahedral coordination is the most stable phase at room temperature. It undergoes a reversible phase transition to the β phase (cobalt in tetrahedra) at 1006 K with an enthalpy of phase transition of 17.6±1.3 kJ mol−1. Enthalpy of formation from oxides of α, β, and red NaCoPO4 are −349.7±2.3, −332.1±2.5, and −332.3±7.2 kJ mol−1; standard enthalpy of formation of α, β, and red NaCoPO4 are −1547.5±2.7, −1529.9±2.8, and −1530.0±7.3 kJ mol−1, respectively. The more exothermic enthalpy of formation from oxides of β NaCoPO4 compared to a structurally related aluminosilicate, NaAlSiO4 nepheline, results from the stronger acid-base interaction of oxides in β NaCoPO4 (Na2O, CoO, P2O5) than in NaAlSiO4 nepheline (Na2O, Al2O3, SiO2).  相似文献   

16.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

17.
Bispropargyl ether of bisphenol-A (BPEBPA), 4,4′-bismaleimido diphenyl ether (BMIE) and a blend consisting 60 mol% of BPEBPA and 40 mol% of BMIE are prepared. The materials are structurally characterized by FTIR. The curing characteristics of the monomers are measured by FTIR and DSC. The results indicated that BPEBPA-BMIE blend has low ΔHcure (J g−1) for the thermal polymerization and the whole temperature window for the exothermic curing reaction is shifted to lower temperature compared to BPEBPA. Borchardt and Daniels method is used to study the cure kinetics of the materials. The thermal curing of BMIE requires activation energy of 156.0 kJ mol−1 whereas BPEBPA needs slightly higher activation energy (177.2 kJ mol−1). From the TG studies, it can be concluded that the cured BPEBPA exhibits higher thermal stability than the cured BMIE due to the more complex network structure that are formed during thermal polymerization of BPEBPA. Dharwadkar and Kharkhanavala equation is employed to calculate the activation energy needed for the thermal degradation of the thermally cured materials. BPEBPA shows much higher activation energy (65.5 kJ mol−1) for thermal degradation indicating the higher thermal stability over the other two materials (BMIE: 42.5 kJ mol−1 and BPEBPA-BMIE blend: 46.9 kJ mol−1). The isothermal degradation of cured materials is effected in nitrogen atmosphere for constant time interval (10 min). The detailed analysis of the degradation products by GC-MS revealed the formation of phenols and several substituted phenols. This finding hints that the competitive C-C and C-O scissions of the chromene ring units formed via the Claisen rearrangement of the aryl propargyl ether system present in BPEBPA is operative.  相似文献   

18.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

19.
Manuela Kim 《Talanta》2007,72(3):1054-1058
A simple and sensitive HPLC post-derivatization method with colorimetric detection has been developed for the determination of N-nitroso glyphosate in samples of technical glyphosate. Separation of the analyte was accomplished using an anionic exchange resin (2.50 mm × 4.00 mm i.d., 15 μm particle size, functional group: quaternary ammonium salt) with Na2SO4 0.0075 M (pH 11.5) (flow rate: 1.0 mL min−1) as mobile phase. After separation, the eluate was derivatized with a colorimetric reagent containing sulfanilamide 0.3% (w/v), [N-(1-naphtil)ethilendiamine] 0.03% (w/v) and HCl 4.5 M in a thermostatized bath at 95 °C. Detection was performed at 546 nm. All stages of the analytical procedure were optimized taking into account the concept of analytical minimalism: less operation times and costs; lower sample, reagents and energy consumption and minimal waste. The limit of detection (k = 3) calculated for 10 blank replicates was 0.04 mg L−1 (0.8 mg kg−1) in the solid sample which is lower than the maximum tolerable accepted by the Food and Agriculture Organization of the United Nations.  相似文献   

20.
Isothermal depolymerization of the two polymers of C60, i.e. of 1D orthorhombic phase (O) and of “dimer state” (DS) have been studied by means of Infra-red spectroscopy in the temperature ranges 383-423 and 453-503 K, respectively. Differential Scanning Calorimetry (DSC) has been used to obtained depolymerization polytherms for O-phase and DS. Standard set of reaction models have been applied to describe depolymerization behavior of O-phase and DS. The choice of the reaction models was based primarily on the isotherms. Several models however demonstrated almost equal goodness of fit and were statistically indistinguishable. In this case we looked for simpler/more realistic mechanistic model of the reaction. For DS the first-order expression (Mampel equation) with the activation energy Ea = 134 ± 7 kJ mol−1 and preexponential factor ln(A/s−1) = 30.6 ± 2.1, fitted the isothermal data. This activation energy was nearly the same as the activation energy of the solid-state reaction of dimerization of C60 reported in the literature. This made the enthalpy of depolymerization close to zero in accord with the DSC data on depolymerization of DS. Mampel equation gave the best fit to the polythermal data with Ea = 153 kJ mol−1 and preexponential factor ln(A/s−1) = 35.8. For O-phase two reasonable reaction models, i.e. Mampel equation and “contracting spheres” model equally fitted to the isothermal data with Ea = 196 ± 2 and 194 ± 8 kJ mol−1, respectively and ln(A/s−1) = 39.1 ± 0.5 and 37.4 ± 0.2, respectively and to polythermal data with Ea = 163 and 170 kJ mol−1, respectively and ln(A/s−1) = 32.5 and 29.5, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号