首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuing our previous discussion of the canonical covariant formalism (Zandron, O. S. (in press). International Journal of Theoretical Physics), the second-order canonical fünfbein formalism of the topological five-dimensional Chern–Simons gravity is constructed. Since this gravity model naturally contains a Gauss–Bonnet term quadratic in curvature, the second-order formalism requires the implementation of the Ostrogradski transformation in order to introduce canonical momenta. This is due to the presence of second time-derivatives of the fünfbein field. By performing the space–time decomposition of the manifold M 5, the set of first-class constraints that determines all the Hamiltonian gauge symmetries can be found. The total Hamiltonian as generator of time evolution is constructed, and the apparent gauge degrees of freedom are unambiguously removed, leaving only the physical ones.  相似文献   

2.
The quantal symmetry property in the CP1 non-linear sigma model with Abelian–Maxwell–Chern–Simons (AMCS) term in 2 + 1 dimensions is studied. In the Coulomb gauge, the system is quantized in the Faddeev–Senjanovic (FS) path-integral formalism. The canonical Ward identities for proper vertices under local gauge transformation are derived. Based on the quantal symmetries of a constrained Hamiltonian system, the fractional spin at the quantum level of this system is also presented as those of the system without Maxwell term.  相似文献   

3.
The quantal symmetry property in the CP1 nonlinear sigma model with Abelian–Maxwell–Chern–Simons (AMCS) term in 2 + 1 dimensions is studied. In the Coulomb gauge, the system is quantized in the Faddeev–Senjanovic (FS) path-integral formalism. The canonical Ward identities for proper vertices under local gauge transformation are derived. Based on the quantal symmetries of a constrained Hamiltonian system, the fractional spin at the quantum level of this system is also presented as those of the system without Maxwell term.  相似文献   

4.
It is argued that N=6 supergravity on Ad S5, with the gauge group SU(3)× U(1) corresponds, at the classical level, to a subsector of the chiral primary operators of N=4 Yang–Mills theories. This projection involves a duality transformation of N=4 Yang–Mills theory and therefore can be valid if the coupling is at a self-dual point, or for those amplitudes that do not depend on the coupling constant.  相似文献   

5.
Summary The theory of the RPA optical response of a solid has been generalized in order to take into account also the possible presence of spatially nonlocal potentials in the Hamiltonian. Explicit expressions for first- and second-order susceptibilities are given in the new framework. The expressions obtained depend on the matrix elements of operators of the form of a commutator of a component of the position operatorr and an operator that commutes with the lattice translations. The problem of the evaluation of these matrix elements is solved in a simple manner by introducing an auxiliary, periodic position operator,XXXr. In such a way a general formulation is obtained that preserves the gauge invariance. As an application of the new theory, the second harmonic generation (SHG) from a semiconductor in a simple two-band model has been studied. The differences between our correct gauge-invariant results and those obtained in the usual local approximation is an indication of a slow convergence of the expressions obtained in the local approximation.  相似文献   

6.
We generalize previous works on the Dirac eigenvalues as dynamical variables of Euclidean gravity and N =1 D = 4 supergravity to on-shell N = 2 D = 4 Euclidean supergravity. The covariant phase space of the theory is defined as the space of the solutions of the equations of motion modulo the on-shell gauge transformations. In this space we define the Poisson brackets and compute their value for the Dirac eigenvalues.   相似文献   

7.
We discuss the two-dimensional isotropic antiferromagnet in the framework of gauge invariance. Gauge invariance is one of the most subtle useful concepts in theoretical physics, since it allows one to describe the time evolution of complex physical system in arbitrary sequences of reference frames. All theories of the fundamental interactions rely on gauge invariance. In Dirac’s approach, the two-dimensional isotropic antiferromagnet is subject to second-class constraints, which are independent of the Hamiltonian symmetries and can be used to eliminate certain canonical variables from the theory. We have used the symplectic embedding formalism developed by a few of us to make the system under study gauge invariant. After carrying out the embedding and Dirac analysis, we systematically show how second-class constraints can generate hidden symmetries. We obtain the invariant second-order Lagrangian and the gauge-invariant model Hamiltonian. Finally, for a particular choice of factor ordering, we derive the functional Schröodinger equations for the original Hamiltonian and for the first-class Hamiltonian and show them to be identical, which justifies our choice of factor ordering.  相似文献   

8.
The gauge invariant theories of the generalized chiral Schwinger model are constructed in terms of two schemes with and without Wess-Zumino terms, respectively. Following the former scheme, we calculate the Wess-Zumino term which cancels the gauge anomaly, and then constitute the gauge invariant theory by adding the Wess-Zumino term to the original Lagrangian of the model. According to the latter, we modify the original Hamiltonian by adding a term composed of constraints of the model. It is so designed that the theory described by the modified Hamiltonian and its corresponding first-order Lagrangian maintains gauge invariance. We show by the canonical Dirac method that each of the two gauge invariant theories has the same physical spectrum as that of the original gauge noninvariant formulation.  相似文献   

9.
The gauge invariant theories of the generalized chiral Schwinger model are constructed in terms of two schemes with and without Wess-Zumino terms, respectively. Following the former scheme, we calculate the Wess-Zumino term which cancels the gauge anomaly, and then constitute the gauge invariant theory by adding the Wess-Zumino term to the original Lagrangian of the model. According to the latter, we modify the original Hamiltonian by adding a term composed of constraints of the model. It is so designed that the theory described by the modified Hamiltonian and its corresponding first-order Lagrangian maintains gauge invariance. We show by the canonical Dirac method that each of the two gauge invariant theories has the same physical spectrum as that of the original gauge noninvariant formulation.  相似文献   

10.
The Hamiltonian formulation for the Yang-Mills Lagrangian with higher derivatives is constructed. Canonical quantization of the theory in a Coulomb gauge is performed. It is shown that the generating functional of the Green's function obtained reduces to the form given by the Faddeev-Popov rules.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 37–40, July, 1985.  相似文献   

11.
In this review article we study the gaugings of extended supergravity theories in various space‐time dimensions. These theories describe the low‐energy limit of non‐trivial string compactifications. For each theory under consideration we review all possible gaugings that are compatible with supersymmetry. They are parameterized by the so‐called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half‐maximal (N = 4) supergravities in d = 4 and d = 5 and to the maximal supergravities in d = 2 and d = 7. Examples of particular gaugings are given. Whenever possible, the higher‐dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor.  相似文献   

12.
《Nuclear Physics B》1997,492(3):647-681
A new method to obtain the Picard-Fuchs equations of effective, N = 2 supersymmetric gauge theories in 4 dimensions is developed. It includes both pure super Yang-Mills and supersymmetric gauge theories with massless matter hypermultiplets. It applies to all classical gauge groups, and directly produces a decoupled set of second-order, partial differential equations satisfied by the period integrals of the Seiberg-Witten differential along the 1-cycles of the algebraic curves describing the vacuum structure of the corresponding N = 2 theory.  相似文献   

13.
In terms of Dirac matrices the self-dual and anti-self-dual decomposition of conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variables include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm.  相似文献   

14.
With a suitable gauge transformation, the Hamiltonian formalism of the Landau–Lifschitz equation for a spin chain with an easy plane is established by standard procedure. Action-angle variables are obtained and the canonical equation is given.  相似文献   

15.
A class of gauge conditions is obtained from an isotropic cosmological model with a conformally invariant scalar field, leading to a Hamiltonian dynamics with a time independent Hamiltonian which coincides with that of a harmonic oscillator. The quantum dynamics of the model is considered, and the inevitability of a singularity in its quantum version is shown.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 29–32, January, 1990.In conclusion, the authors thank L. D. Faddeev and V. V. Nesterenko for useful discussions.  相似文献   

16.
Two topics of lattice gauge theory are reviewed. They include string tension and β-function calculations by strong coupling Hamiltonian methods for SU(3) gauge fields in 3 + 1 dimensions, and a 1/N-expansion for discrete gauge and spin systems in all dimensions. The SU(3) calculations give solid evidence for the coexistence of quark confinement and asymptotic freedom in the renormalized continuum limit of the lattice theory. The crossover between weak and strong coupling behavior in the theory is seen to be a weak coupling but non-perturbative effect. Quantitative relationships between perturbative and non-perturbative renormalization schemes are obtained for the O(N) nonlinear sigma models in 1 + 1 dimensions as well as the range theory in 3 + 1 dimensions. Analysis of the strong coupling expansion of the β-function for gauge fields suggests that it has cuts in the complex 1/g2-plane. A toy model of such a cut structure which naturally explains the abruptness of the theory's crossover from weak to strong coupling is presented. The relation of these cuts to other approaches to gauge field dynamics is discussed briefly.The dynamics underlying first order phase transitions in a wide class of lattice gauge theories is exposed by considering a class of models-P(N) gauge theories - which are soluble in the N → ∞ limit and have non-trivial phase diagrams. The first order character of the phase transitions in Potts spin systems for N #62; 4 in 1 + 1 dimensions is explained in simple terms which generalizes to P(N) gauge systems in higher dimensions. The phase diagram of Ising lattice gauge theory coupled to matter fields is obtained in a 1N expansion. A one-plaquette model (1 time-0 space dimensions) with a first-order phase transitions in the N → ∞ limit is discussed.  相似文献   

17.
A mathematically rigorous relativistic quantum Yang–Mills theory with an arbitrary semisimple compact gauge Lie group is set up in the Hamiltonian canonical formalism. The theory is nonperturbative, without cut-offs, and agrees with the causality and stability principles. This paper presents a fully revised, simplified, and corrected version of the corresponding material in the previous papers Dynin ([11] and [12]). The principal result is established anew: due to the quartic self-interaction term in the Yang–Mills Lagrangian along with the semisimplicity of the gauge group, the quantum Yang–Mills energy spectrum has a positive mass gap. Furthermore, the quantum Yang–Mills Hamiltonian has a countable orthogonal eigenbasis in a Fock space, so that the quantum Yang–Mills spectrum is point and countable. In addition, a fine structure of the spectrum is elucidated.  相似文献   

18.
We present atomistic theory of electronic and optical properties of a single InAs quantum dot grown on a pyramidal InP nanotemplate. The shape and size of the dot is assumed to follow the nanotemplate shape and size. The electron and valence hole single particle states are calculated using atomistic effective–bond–orbital model with second nearest-neighbor interactions. The electronic calculations are coupled to separately calculated strain distribution via Bir–Pikus Hamiltonian. The optical properties of InAs dots embedded in InP pyramids are calculated by solving the many-exciton Hamiltonian for interacting electron and hole complexes using the configuration–interaction method. The effect of quantum-dot geometry on the optical spectra is investigated by a comparison between dots of different shapes.  相似文献   

19.
It has been shown that the orbits of motion for a wide class of non-relativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual by means of a conformal map. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence in this way with another Hamiltonian with conformally modified metric. Such a construction could account for part of the requirements of Bekenstein for achieving the MOND theory of Milgrom in the post-Newtonian limit. The constraints on the MOND theory imposed by the galactic rotation curves, through this correspondence, would then imply constraints on the structure of the world scalar field. We then use the fact that a Hamiltonian with vector gauge fields results, through such a conformal map, in a Kaluza-Klein type theory, and indicate how the TeVeS structure of Bekenstein and Saunders can be put into this framework. We exhibit a class of infinitesimal gauge transformations on the gauge fields Um(x){\mathcal{U}}_{\mu}(x) which preserve the Bekenstein-Sanders condition UmUm=-1{\mathcal{U}}_{\mu}{\mathcal{U}}^{\mu}=-1. The underlying quantum structure giving rise to these gauge fields is a Hilbert bundle, and the gauge transformations induce a non-commutative behavior to the fields, i.e. they become of Yang-Mills type. Working in the infinitesimal gauge neighborhood of the initial Abelian theory we show that in the Abelian limit the Yang-Mills field equations provide residual nonlinear terms which may avoid the caustic singularity found by Contaldi et al.  相似文献   

20.
The Hamiltonian formulation of generalrelativity on a null surface is established in theteleparallel geometry. No particular conditions on thetetrads are imposed, like the time gauge condition. Bymeans of a 3 + 1 decomposition the resultingHamiltonian arises as a completely constrained system.However, it is structurally different from the standardArnowitt–Deser–Misner (adm) typeformulation. In this geometrical framework the basic fieldquantities are tetrads that transform under the globalSO(3, 1) and the torsion tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号