首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The existence of one-dimensional (1D) electronic states between self-organized Pt nanowires spaced 1.6 or 2.4 nm apart on a Ge(001) surface is revealed by low-temperature scanning tunneling microscopy. These perfectly straight Pt nanowires act as barriers for a surface state (located just below the Fermi level) of the underlying terrace. The energy positions of the 1D electronic states are in good agreement with the energy levels of a quantum particle in a well. Spatial maps of the differential conductivity of the 1D electronic states conclusively reveal that these states are exclusively present in the troughs between the Pt nanowires.  相似文献   

2.
Using ab initio calculations, structural tapering of silicon nanowires is shown to have a profound effect on their electronic properties. In particular, the electronic structure of small-diameter tapered silicon nanowires is found to have a strong axial dependence, with unoccupied eigenstates being substantially more sensitive to diameter. Moreover, the states corresponding to the highest occupied and the lowest unoccupied states are spatially separated along the wire axis by the tapering-induced charge transfer and a strong electrostatic potential gradient, due to an appreciable variation in quantum confinement strength with diameter.  相似文献   

3.
李登峰  李柏林  肖海燕  董会宁 《中国物理 B》2011,20(6):67101-067101
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.  相似文献   

4.
Atomic and electronic properties of N-N split interstitial in GaN nanowires have been investigated using first principles calculations. The formation energy calculations show that the N-N interstitial favors substituting an N atom at the surface of the nanowires. The interstitial induces localized states in the band gap of GaN nanowires.  相似文献   

5.
6.
Valence electron energy loss spectroscopy in a transmission electron microscope is employed to investigate the electronic structure of ZnO nanowires with diameter ranging from 20 to 100 nm. Its excellent spatial resolution enables this technique to explore the electronic states of a single nanowire. We found that all of the basic electronic structure characteristics of the ZnO nanowires, including the 3.3 eV band gap, the single electron interband transitions at approximately = 9.5, approximately = 13.5,and approximately = 21.8 eV, and the bulk plasmon oscillation at approximately 18.8 eV, resemble those of the bulk ZnO. Momentum transfer resolved energy loss spectra suggest that the 13.5 eV excitation is actually consisted of two weak excitations at approximately = 12.8 and approximately = 14.8 eV, which originate from transitions of two groups of the Zn 3d electrons to the empty density of states in the conduction band, with a dipole-forbidden nature. The energy loss spectra taken from single nanowires of different diameters show several size-dependent features, including an increase in the oscillator strength of the surface plasmon resonance at approximately = 11.5 eV, a broadening of the bulk plasmon peak, and splitting of the O 2s transition at approximately = 21.8 eV into two peaks, which coincides with a redshift of the bulk plasmon peak, when the nanowire diameter decreases. All these observations can be well explained by the increased surface/volume ratio in nanowires of small diameter.  相似文献   

7.
Bulk bismuth is an efficient thermoelectric material. Assuming intrinsic conditions, the theory of quantum confinement of bismuth nanowires by Hicks and Dresselhaus predicts a semimetal-to-semiconductor transformation for critical diameters of around 50 nm. For nanowires of diameters below the critical diameter, electronic states can be considered to be one dimensional and therefore the thermopower can be very large. However, angle-resolved photoemission spectroscopy (ARPES) studies of Bi planar surfaces present direct evidence of heavy mass surface states that can inhibit the semimetal-to-semiconductor transformation. We present a study of the Fermi surface of Bi nanowires of diameters ranging between 200 and 30 nm employing the Shubnikov–de Haas method. Our results can be understood in terms of the model of surface states. For 30 nm nanowires we find that the Fermi surface is spherical, that the carriers have high effective mass, and that the number of carriers corresponds to that inferred from ARPES measurements.  相似文献   

8.
The electronic structure of a bare Rh(553) surface and of a Ni-decorated Rh(553) surface has been investigated by angle-resolved UV photoelectron spectroscopy and density functional theory calculations. The self-assembly of Ni adatoms leads to the decoration of the steps of the Rh(553) surface with monoatomic Ni rows under suitable kinetic conditions, thus forming a regular array of pseudomorphic bimetallic Ni–Rh nanowires. The electronic structure of the clean Rh(553) surface has been compared to the one of the flat Rh(111) surface, and additional surface states localized at the step edges due to the lower coordination of the step atoms have been detected. The Ni wires are weakly hybridized with the Rh substrate states and are characterized by only weakly dispersing states. This leads to a strong narrowing of the d-band, which is argued to be the origin of the observed high chemical reactivity of the Ni–Rh nanowires.  相似文献   

9.
吴毅  李鹏  吴中正  方圆  刘洋 《物理学进展》2022,42(3):96-120
重费米子材料作为一类典型的强关联电子体系,蕴含着非常规超导、奇异金属、量子临界、 磁有序、重电子态、关联拓扑态等新奇的量子态,而4f 电子在其中扮演着重要的作用。随着高分 辨角分辨光电子能谱和薄膜生长技术的发展,精确探测重费米子材料中4f 电子在能量/动量空间 的色散和谱权重成为了可能,这为从微观上理解这类材料中的电子关联效应和新奇量子现象提供 了重要的基础。本论文总结了几个典型的重费米子单晶和薄膜体系的电子态研究,包括Ce-115 体 系、CeCu2Si2、CeRh6Ge4 以及单晶 Ce 膜等。这些结果为理解重费米子体系中重电子态的形成 和温度演化、近藤杂化的能带/动量依赖、重电子能带与超导的关系、近藤效应与磁性和其它量子 态的竞争、4f 电子的维度调控等重要物理问题提供了谱学证据。  相似文献   

10.
Peculiarities of the electron spectrum rearrangement for the double-well heterostructure GaAs/AlGaAs with a variable dimensionality of electronic states in an external electric field are investigated theoretically and experimentally. The structure is an important part of the active element of a quantum-well unipolar semiconductor laser proposed by the authors earlier. The possibility of controlling the dimensionality of the lower laser subband in such an active element by an external electric field is demonstrated.  相似文献   

11.
本文提出了一种在二维SnSe中掺杂一维Mn纳米线的2D-1D复合结构,并系统地研究了其热电性能。结果表明,一维Mn纳米线将电子态汇聚在纳米线附近,提高了材料的各向异性,降低了电子在某一方向上的散射效应,导致了较高的迁移率和电导率。自旋向上和向下的电子态发生简并,导致了较高的塞贝克系数和电导率。此外,Mn纳米线将晶格热导率降低了约0.17 W·m?1·K?1。在200至650 K的温度范围内,3Mn-SnSe具有0.73至3.78的极高ZT值,比本征二维SnSe平均提高了约39.2%。  相似文献   

12.
本文提出了一种在二维SnSe中掺杂一维Mn纳米线的2D-1D复合结构,并系统地研究了其热电性能。结果表明,一维Mn纳米线将电子态汇聚在纳米线附近,提高了材料的各向异性,降低了电子在某一方向上的散射效应,导致了较高的迁移率和电导率。自旋向上和向下的电子态发生简并,导致了较高的塞贝克系数和电导率。此外,Mn纳米线将晶格热导率降低了约0.17 W·m?1·K?1。在200至650 K的温度范围内,3Mn-SnSe具有0.73至3.78的极高ZT值,比本征二维SnSe平均提高了约39.2%。  相似文献   

13.
In recent years, it has become possible to create well-ordered semiconductor surfaces with metallic surface states by using self-assembly of metal atoms. Since these states lie in the band gap of the semiconductor, they completely decouple from the substrate. In addition to two-dimensional structures it is possible to obtain arrays of one-dimensional atomic chains, which may be viewed as the ultimate nanowires. The dimensionality can be varied systematically by using vicinal surfaces with variable step spacing. Angle-resolved photoemission and scanning tunnelling spectroscopy reveal surprising features, such as a fractional band filling, nanoscale phase separation into doped and undoped chain segments, and a spin-splitting at a non-magnetic surface. Prospects for one-dimensional electron gas physics in atomic chains are discussed.  相似文献   

14.
The effects of doping (by ion implantation) on the electronic structure of ZnO nanowires, particularly on the defect states generation in the band gap of ZnO, are investigated using valence electron energy loss spectroscopy (VEELS) performed in a transmission electron microscope (TEM). The improved spectrum energy resolution via the introduction of a gun monochromator, together with the reduced intensity in the zero loss peak tail as realized by spectrum acquisition at non-zero momentum transfer, enable us to extract such electronic structure information from the very low loss region of the EEL spectra. We have compared the doping effects of several dopant elements, i.e., Er, Yb, and Co, and found that generation of the band tail states ( approximately 2-3.3eV) is a common consequence of the ion implantation process. On the other hand, specific mid-gap state(s) in the lower energy range are created only in the rare earth element doped ZnO nanowires, suggesting the dopant-sensitive nature of such state.  相似文献   

15.
Six kinds of Ni-A1 alloy nanowires are optimized by means of simulated annealing. The optimized structures show that the Ni-A1 alloy nanowires are helical shell structures that are wound by three atomic strands, which is very similar to the case with pure metallic nanowires. The densities of states (DOS), transmission function T( E), current-voltage (I - V) curves, and the conductance spectra of these alloy nanowires are also investigated. Our results indicate that the conductance spectra depend on the geometric structure properties and the ingredients of the alloy nanowires. We observe and study the nonlinear contribution to the I-V characteristics that are due to the quantum size effect and the impurity effect. The addition of Ni atoms decreases the conductance of the Ni-A1 alloy nanowire because the doping atom Ni change the electronic band structures and the charge density distribution. The interesting statistical results shed light on the physics of quantum transport at the nano-scale.  相似文献   

16.
We derive a mathematical expression for the number of electronic states in metallic nanowires within the electrochemical environment as a function of the electrochemical potential so that the variation of the above number with respect to this potential is discussed within an electron energy range from zero energy up to Fermi energy.  相似文献   

17.
Novel structures and properties of gold nanowires   总被引:8,自引:0,他引:8  
Wang B  Yin S  Wang G  Buldum A  Zhao J 《Physical review letters》2001,86(10):2046-2049
The structures of free-standing gold nanowires are studied by using molecular-dynamics-based genetic algorithm simulations. Helical and multiwalled cylindrical structures are found for the thinner nanowires, while bulk-like fcc structures eventually form in the thicker nanowires up to 3 nm in diameter. This noncrystalline-crystalline transition starts from the core region of nanowires. The vibrational, electronic, and transport properties of nanowires are investigated based on the optimal structures. Bulklike behaviors are found for the vibrational and electronic properties of the nanowires with fcc crystalline structure. The conductance of nanowires generally increases with wire diameter and depends on the wire structure.  相似文献   

18.
An electronic band with quasi-one-dimensional dispersion is found at the interface between a monolayer of a charge-transfer complex (TTF-TCNQ) and a Au(111) surface. Combined local spectroscopy and numerical calculations show that the band results from a complex mixing of metal and molecular states. The molecular layer folds the underlying metal states and mixes with them selectively, through the TTF component, giving rise to anisotropic hybrid bands. Our results suggest that, by tuning the components of such molecular layers, the dimensionality and dispersion of organic-metal interface states can be engineered.  相似文献   

19.
The structural stability and electronic properties of four different shapes of GaSb nanowire have been studied by ab-initio method using the generalized gradient approximations. The different structures were two atom linear wire, two atom zigzag wire, four atom square wire and six atom hexagonal wire. The geometry optimization and the stability of all nanowires were investigated. We explore the minimum energy atomic configuration for all the considered shapes. We find that four atom square wire configuration has greater stability in comparison to other shapes. The analysis of density of states and band structures of optimized nanowires predicts that semiconducting nanowires may be metallic or semiconducting. The behavior entirely depends upon the geometrical structure.  相似文献   

20.
A new theory for determining the quantized electron conductance through multi-atom nanowires is presented by introducing a transmission-probability function from the Fermi–Dirac distribution. By virtue of this formulation and by using an approximate relationship between the conductance and the electronic density of states, an expression for the number of off-resonant conduction states is derived. In addition, some aspects related to atom–lead coupling are discussed. Our results agree well with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号