首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphorescence yield and decay kinetics of tryptophan (Trp) in apoazurin from Pseudomonas aeruginosa, subtilisin Carlsberg, Staphylococcal nuclease and liver alcohol dehydrogenase were determined as a function of temperature from 150 K (glassy matrix) to 300 K (fluid solution). The constancy of the lifetime-normalized phosphorescence yield with apoazurin and with Trp-314 in alcohol dehydrogenase establishes that the intersystem crossing quantum yield is practically unaffected across the temperature range. Consequently, any decrease in phosphorescence intensity not accounted for by lifetime-shortening is a signal either of the selective quenching of specific Trp residues in the same macromolecule or that the protein sample is heterogeneous in its emission properties. From an analysis of the thermal profile it is concluded that subtilisin Carlsberg and S. nuclease, as opposed to apoazurin, are not phosphorescent at ambient temperature, their residual emission probably arising from protein impurities. Criteria for distinguishing conformer emission from a contribution by protein impurities are discussed.  相似文献   

2.
Binding of sodium dodecyl sulfate (SDS) to bovine serum albumin (BSA) and human serum albumin (HSA) in aqueous solutions at room temperature induces significant changes in the phosphorescence lifetime of tryptophan (Trp) residues. A steep rise of the phosphorescence lifetime from 1.9 ms to 10.0 ms for BSA and from 1.9 ms to 5.5 ms for HSA is observed when the total SDS concentration increased from 0.0 mM to 0.22 mM at 1 mg/mL protein concentration. As the total SDS concentrationis further inccreased to 2.2 mM, a slower increase in the phosphorescence lifetime is observed, from 10.0 ms to 19.5 ms for BSA and from 5.5 ms to 7.2 ms for HSA. It appears that the phosphorescence lifetime modifications are mainly due to an increase of protein matrix rigidity around Trp residues. The observed differences (between HSA and BSA) allow us to distinguish the contribution of the two Trp residues to the BSA phosphorescence.  相似文献   

3.
The phosphorescence lifetime (tau) of tryptophan (Trp) residues in proteins in aqueous solutions at ambient temperature can vary several orders of magnitude depending on the flexibility of the local structure and the rate of intramolecular quenching reactions. For a more quantitative interpretation of tau in terms of the local protein structure, knowledge of all potential quenching moieties in proteins and of their reaction rates is required. The quenching effectiveness of each amino acid (X) side chain and of the peptide backbone was investigated by monitoring their intramolecular quenching rate (k(obs)) in tripeptides of the form acetyl-Trp-Gly-X-CONH2 (WGX), where Trp is joined to X by a flexible Gly link. The results indicate that among the various groups present in proteins only the side chains of Cys, His, Tyr and Phe are able to quench Trp phosphorescence at a detectable rate (k(obs) > 40 s(-1)), with the quenching effectiveness for rotationally unrestricted side chains ranking in the order Cys > His+ > Tyr > Phe approximately His. For the aromatic side chains the corresponding contact rate at 20 degrees C is estimated to be between 3-4 x 10(9) s(-1) for Cys (as determined by Lapidus et al.), 0.8-8 x 10(6) s(-1) for His+, 0.37-3.7 x 10(6) s(-1) for Tyr and 0.2-2 x 10(5) s(-1) for Phe and His. In the cases of His and Tyr, k(obs) drops sharply with increasing pH, with midpoint transitions about 1 pH unit above the pKa, indicating that quenching is almost exclusive to the protonated form. From the temperature dependence of the rate, obtained in 50/50 propylene glycol/water between -20 degrees C and 20 degrees C, the reaction is characterized by activation energies of about 5 kcal.M(-1) for His+ and Tyr and 8 kcal.M(-1) for Phe. An analysis of the groups in contact with Trp residues in proteins that exhibit long phosphorescence lifetimes at ambient temperature leads to the conclusion that the contact rate of the peptide group and of the remaining side chains is lower than 0.1 s(-1), showing that these moieties are practically inert with respect to the triplet-state lifetime. It shows further that the immobilization of the aromatic side chains within the globular fold cuts their quenching effectiveness drastically to contact rates < 2 s(-1), a phenomenon attributed to the low probability of forming a stacked exciplex with the indole ring. All evidence suggests that, except in the case of nearby Cys or Trp residues, whose interaction with the triplet state reaches beyond van der Waals contact, the emission of buried Trp residues is unlikely to be quenched by surrounding protein groups.  相似文献   

4.
The fluorescence of the single tryptophan (Trp69) of cutinase from Fusarium solani pisi, free in aqueous solution and adsorbed onto the surface of poly(methyl methacrylate) (PMMA) latex particles, was studied at pHs of 4.5 and 8.0. The monodisperse PMMA particles (d=106.0+/-0.1 nm) were coated with a quite compact monolayer of cutinase at both pH values. The Trp decay curve of the folded free cutinase in solution can only be fitted with a sum of four exponentials with lifetimes of 0.05, 0.3-0.4, 2-3, and 6-7 ns, irrespective of pH. The 50 ps lifetime is attributed to the population of Trp residues hydrogen bonded with the Ala32 and strongly quenched by a close disulfide bridge, while the other lifetimes are due to the non-hydrogen-bonded Trp rotamers. The 50 ps Trp lifetime component disappears by temperature melting and upon protein adsorption, owing to the disruption of the Trp-Ala hydrogen bond and the release of the Trp residue from the vicinity of the disulfide bridge. This shows that cutinase adsorption occurs by the region of the protein where the Trp is located, which agrees with the retention of cutinase enzymatic activity by adsorption at basic pH.  相似文献   

5.
色氨酸残基光寿命监测了大肠杆菌碱性磷酸酶在不同变性剂中展开过程的构象 变化.结果表明:不同变性剂加人蛋白质溶液中,色氨酸残基的微环境发生了较大 的变化,磷光发射减弱,寿命缩短,预示了色氨酸残基从刚性的疏水内芯转移到蛋 白质表面;通过Arrthenius关系式获得的热动力学参数如活化能(E_a)、活化熵 (△S°)、活开过程中间态的形成.  相似文献   

6.
Abstract. Tryptophan phosphorescence lifetime and quantum yield are sensitive to the local environment. The phosphorescence from tryptophan analogs, however, has not been studied. We report here data on the room temperature phosphorescence of tryptophan, 4-, 5- and 6-fluoro-DL-tryptophan (4-F-trp, 5-F-trp and 6-F-trp) and 5-bromo-DL-tryptophan (5-Br-trp) embedded in glassy powders of freeze-dried sucrose. In aqueous solution, the absorption of the analogs was either blue-shifted (4-F-trp), red-shifted (5-F-trp and 5-Br-trp) or not shifted (6-F-trp) with respect to tryptophan. The phosphorescence emission spectra of all analogs were red-shifted compared to trp (442 nm) with maxima at 446 nm (5-F-trp), 451 mn (6-F-trp), 452 nm (5-Br-trp) and 469 nm (4-F-trp). The 5-F-trp and 6-F-trp analogs had emission intensities similar to tryptophan (relative quantum yields of 0.68 and 0.91, respectively, compared to tryptophan), while the intensities of the 4-F and 5-Br analogs were lower (relative quantum yields of 0.039 and 0.022, respectively). All analogs exhibited complex decay behavior requiring several exponentials for an adequate fit; the average lifetimes were all lower than that of trp (1039 ms). The average lifetimes of the fluorinated analogs (5-F, 721 ms; 6-F, 482 ms and 4-F, 35 ms) scaled approximately with the relative quantum yields while that of 5-Br (0.53 ms) was significantly lower. Analysis of the individual lifetimes suggested that the fluorinated analogs differ in their sensitivity to environmental interactions, with 5-F- and 6-F-trp quenched 1.5-2-fold and 4-F-trp about 23-fold more efficiently than tryptophan. The red-shifted 5-F-trypto-phan analog, which has been incorporated into proteins, may provide an alternative phosphorescence probe for selective phosphorescence detection of a specific protein in a complex mixture.  相似文献   

7.
Abstract— The ultraviolet fluorescence spectrum of bacteriorhodopsin is characterized by emission from an ensemble of internal, surface and exposed Trp residues. The temperature dependence of fluorescence yields exhibits a discontinuity at about 30°C coincident with previously observed transitions in membrane lipid microviscosity, photocycle lifetime and photoconductivity. Quenching at high pH coincides with ionization of Tyr and an emission red shift to a spectrum typical of that of tyrosinate. Guanidine hydrochloride produces only partial protein denaturation, increasing the number of exposed Trp by 50%. While exposed Trp in native bacteriorhodopsin are in the minority, they represent a higher proportion of total Trp than is found in rhodopsin of animal rod outer sections.  相似文献   

8.
Room temperature phosphorescence(RTP) probe is a powerful tool for studying the kinetics and relationship between the conformation change and physiological function of protein because some slow kinetic processes of protein in solution just occur the same time scales as phosphorescence lifetime and it susceptibly indicates microenvironment properties. RTP of Escherichia coli alkaline phosphatase(AP) comes mainly from tryptophan residues (Trp-109). It is well known that the deeper Trp-109 is embedded, The stronger phosphorescence emitting is, and the longer its lifetime is. The current work is a preliminary study of the conformation changes of AP, the local microenvironment of Trp-109 and the quenching kinetic natures in the unfolded processes of AP in the presence of different denaturants.  相似文献   

9.
Measurement of the room temperature Trp triplet state lifetime in proteins by time-resolved phosphorescence can provide valuable information on the structure and dynamics of proteins in solution. Our time-resolved absorption measurements on the long-lived states resulting from electronic excitation of the chromophore demonstrate the presence of more complex behavior than revealed by time-resolved phosphorescence. To provide additional insight into this behavior, a comparative study of time-resolved transient absorption and time-resolved phosphorescence of proteins in solution was carried out. The results show that the time evolution of the long-lived states observed through transient absorption often differs considerably from that observed in time-resolved phosphorescence. In some proteins, the presence of competing reactions complicates the interpretation of the transient absorption measurements (which may affect the phosphorescence yield). A more complete characterization of these processes will likely prove useful in the study of protein structure and dynamics in solution.  相似文献   

10.
《Chemical physics》2005,308(1-2):93-102
The absorption and emission spectroscopic behaviour of cyclometalated fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is studied at room temperature. Liquid solutions, doped films, and neat films are investigated. The absorption cross-section spectra including singlet–triplet absorption, the triplet–singlet stimulated emission cross-section spectra, the phosphorescence quantum distributions, the phosphorescence quantum yields and the phosphorescence signal decays are determined. In neat films fluorescence self-quenching occurs, in diluted solid solution (polystyrene and dicarbazole-biphenyl films) as well as deaerated liquid solution (toluene) high phosphorescence quantum yields are obtained, and in air-saturated liquid solutions (chloroform, toluene, tetrahydrofuran) the phosphorescence efficiency is reduced by triplet oxygen quenching. At intense short-pulse laser excitation the phosphorescence lifetime is shortened by triplet–triplet annihilation. No amplification of spontaneous emission in the phosphorescence spectral region was observed indicating higher excited-state absorption than stimulated emission.  相似文献   

11.
Fluorescence, phosphorescence and electron paramagnetic resonance techniques were used to investigate the effect of the antioxidant spermine on the initial photophysical reactions of tryptophan (Trp) in aqueous salt solutions at 77 K. At low concentrations of Trp (3.5 X 10(-5) M) a ground state complex was formed between one Trp and two spermine molecules (a 1:2 complex). Complexed Trp was photodegraded at a rate 65% lower than the free molecule due to a change in the charge-transfer character of the excited 1La state. At high concentrations of Trp (3.5 X 10(-3) M) the phosphorescence was almost completely quenched due to hydrogen-bond formation between two neighbouring Trp molecules. A strong complex was formed between this Trp dimer and one spermine molecule on addition of spermine (a 2:1 complex). Spermine enhanced intersystem crossing in one of the two Trp molecules in the 2:1 complex and phosphorescence was observed. From this triplet state the tryptophyl radical was formed with high efficiency by hydrogen-atom transfer. The yield of radical formation from the triplet state in the 2:1 complex was much larger than from the excited singlet state in the 1:2 complex.  相似文献   

12.
Abstract— Phosphorescence emission and excitation spectra, as well as decay profiles of human serum albumin, were investigated in the wavelength regions of the tryptophan and tyrosine absorption and emission spectra in potassium phosphate buffer at 77 K. Emission and excitation spectra were found to be linear superpositions of the contributions of the tryptophan and tyrosine residues. It is suggested, therefore, that there is no significant tyrosine to tryptophan energy transfer in this protein at low temperature. The phosphorescence decay is, in general, multiexponential with lifetime components of 5.95, 2.7, and 1.2 s. The longest lifetime is characteristic of tryptophan, whereas the two short components are attributed to two types of tyrosine residues located in different environments within the protein. The latter is confirmed by a detailed analysis of the phosphorescence decay profiles determined at different emission wavelengths, and utilizing different wavelengths of excitation favoring either the tryptophan or tyrosine residues.  相似文献   

13.
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.  相似文献   

14.
Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent‐accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc.  相似文献   

15.
Bovine beta-lactoglobulin A (BLGA) is a well characterized globular protein whose tertiary structure has been investigated in detail. BLGA undergoes a pH-dependent conformational change which X-ray data described as involving mostly the loop connecting strands E and F and the deprotonation of a glutamic acid residue (Glu89). These structural changes have been investigated using, among other techniques, fluorescence spectroscopy. The intrinsic fluorescence of BLGA is dominated by two Trp residues. These residues are located far from the EF loop and would not be expected to probe the pH-induced conformational change of the protein. Trp19 is located at the bottom of the interior beta-barrel, whereas Trp61 is located at the aperture of the barrel near the CD loop and is "silent" in the emission of native BLGA because of the proximity of a disulfide moiety. Our study suggests that, surprisingly, the fluorescence of Trp19 has the characteristic of a more polar environment than structural models from X-ray data would suggest and that at least two distinct conformations (or rotamers) of Trp19 contribute to the fluorescence of the protein. The less populated rotamer (relative amplitude (alpha) approximately 20%, tau approximately 3 ns) probes a more polar environment and a pH-dependent conformational change of BLGA in the region of Trp19 which X-ray data do not detect. Finally, our study provides the estimate of the fluorescence lifetime of Trp61 in the "unquenched" form.  相似文献   

16.
Abstract— Proteins exist in a predominately aqueous solvent environment. Hydration of the protein surface significantly affects many aspects of the protein's structure and function; these effects may be related to the molecular dynamics of the protein. We have examined the influence of hydration on the internal dynamics of hen egg white lysozyme using room-temperature phosphorescence from the intrinsic tryptophan residues. Powders of lyophilized lysozyme were hydrated in a phosphorimeter using a flow system that allowed for continuous manipulation of relative humidity over the range 0–92%; this system allowed us to directly compare intensity differences that result from changes in hydration. Lysozyme phosphorescence intensity decreased as a function of hydration over the entire relative humidity range; the decrease was not linear but appeared to occur in distinct phases. The phosphorescence intensity decays were multiexponential over the hydration range studied, and hydration had the largest influence on the long lifetime component. These data suggest that the protein exists in multiple, static conformations in the dry state and that water binding to polar (as opposed to charged) sites on the protein surface induces local and/or global softening of the protein structure.  相似文献   

17.
The photophysical behaviour of phloxine B adsorbed onto microcrystalline cellulose was evaluated by reflectance spectroscopy and laser induced time-resolved luminescence in the picosecond-nanosecond and microsecond-millisecond ranges. Analysis of the absorption spectral changes with concentration points to a small tendency of the dye to aggregate in the range of concentrations under study. Prompt fluorescence, phosphorescence and delayed fluorescence spectral decays were measured at room temperature and 77 K, without the need of sample degassing because cellulose protects triplet states from oxygen quenching. In all cases, spectral changes with time and lifetime distribution analysis were consistent with the dye coexisting in two different environments: dyes tightly entrapped between polymer chains in crystalline regions of cellulose showed longer fluorescence and phosphorescence lifetimes and more energetic triplet states, while dyes adsorbed in more amorphous regions of the support showed shorter lifetimes and less energetic triplet states. This behaviour is discussed in terms of the different dye-support interactions in both kinds of adsorption sites.  相似文献   

18.
The synthesis, photophysics, electronic structure, and electrochemical characterization of 4'-tert-butylacetylene-2,2':6',2'-terpyridineplatinum(II) chloride (1), 4'-phenylacetylene-2,2':6',2'-terpyridineplatinum(II) chloride (2), and their Zn(II) analogs are described. The Pt(II) complexes display interesting photophysical properties, showing vibronically resolved emission spectra at room temperature in CH(2)Cl(2), resembling a ligand localized emission profile. The photophysics and (1)O2 sensitization experiments support a triplet state assignment for these emissions which are best described as an admixture of charge transfer and ligand localized components, which decay symmetrically with time as evidenced by time resolved emission spectra. Room temperature ligand-localized fluorescence emission is observed from the zinc complexes whereas phosphorescence emission from the (3)pi-pi* manifold was obtained at 77 K in 4 : 1 EtOH/MeOH matrices doped with 10% ethyliodide. Compounds 1 and 2 display long-lived emission at room temperature, the latter possessing a longer lifetime, higher quantum yield, and longer wavelength emission. Lowering the temperature from 298 K to 77 K induces an increase in the excited state lifetime of both platinum systems together with a blue shift in their respective emission maxima, concomitant with more pronounced vibronic structure. The data are consistent with configurationally mixed triplet excited states at room temperature which persists in 77 K glasses. The corresponding Zn(II) complexes display significantly higher energy ligand-localized phosphorescence at 77 K. This latter result suggests that the nature of the metal and/or coordination environment imparts a significant electronic pertubation into the ligand-localized triplet states of these conjugated terpyridyl structures.  相似文献   

19.
The phosphorescence characteristics (excitation and emission spectra and lifetimes) of acetophenone (AP), benzophenone (BP), p-aminobenzophenone (PABP) and Michler's ketone (MK) adsorbed on Whatman No. 1 filter paper were measured at various temperatures, and compared with the phosphorescence characteristics in different solvent glasses at 77 K. Both AP and BP phosphoresce on filter paper only at low temperature (208 K). The phosphorescence lifetimes of AP and BP are < 1 msec, indicating a (3)(n,pi(*)) lower triplet level for paper substrates. With PABP, the low lying triplet state in polar solvents is (3)(CT) and in non-polar solvents is (3)(n, pi(*)); PABP on filter paper results in spectral characteristics similar to those of PABP in polar solvents at 77 K. The lifetime of PABP is longer than that of BP, indicating a (3)(CT) low-lying triplet state. MK, like PABP, has strongly environment-dependent photophysical properties. MK, when adsorbed on filter paper, has an intense long-lived luminescence at room temperature, resulting in a limit of detection of 3 ng ml or 3 pg, and a linear dynamic range of over 3 orders of magnitude. MK appears to be strongly hydrogen-bonded to the filter paper. In studies in ethanol and other solvents, MK adsorbed on filter paper shows a dramatic change in its phosphorescence spectrum when the temperature is lowered from 298 K to 208 K; the phosphorescence peak moves to longer wavelengths and the intensity decreases. The temperature effect could arise from the presence of several conformers of MK or be due to different environmental sites or E-type delayed fluorescence. The low-lying triplet state of MK on filter paper is most likely a (3)(CT) state. Lowering the temperature appears to increase the phosphorescence intensity for ketones which phosphoresce in the (3)(n,pi(*)) triplet state, but affects it only slightly for analytes which phosphoresce in the (3)(pi,pi(*)) triplet state. Room-temperature phosphorescence seems to arise for aromatic ketones and aldehydes with low-lying (3)(pi, pi(*)) or (3)(CT) triplet states.  相似文献   

20.
Heavy atom-induced phosphorescence of organic chromophores that originates from spin?Corbit coupling (SOC) is always accompanied by fluorescence quenching concomitant with a reduction of the triplet excited state lifetime. However, such changes are typically manifest by fluorescence quenching at room temperature and phosphorescence sensitization at cryogenic temperatures. Herein we overview our efforts over the past decade in which both internal and external heavy-atom effects (HAEs) can trigger room temperature phosphorescence (RTP) with dramatic shortening of the phosphorescence radiative lifetime by several orders of magnitude. Such spectral properties render new classes of phosphorescent materials for potential use in organic light-emitting diodes (OLEDs). The molecular systems described in this paper are organic fluorophores that are ??-complexed or ??-bonded to a multinuclear d10 transition metal center, the presence of which leads to phosphorescence sensitization because of the significant SOC in such materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号