首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 100 freshwater samples (ground water, surface water, etc.) collected in the former USSR were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Standard water, NBS SRM 1643b, was used for quality control. By using the semi-quantitative analysis mode, analytical data and certified values (or informative values) were in agreement within ±30%. Concentrations of B, Ni, Se, Sr and Ba were found to be higher than global means. Concentration levels of Ag and Pb tended to be lower. For Be, V, Cr, Mn, Co, Cu, Zn, As, Mo, Cd, Tl, and Bi, the concentrations were almost equal to the global levels.  相似文献   

2.
Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to explore the physical, chemical, and isotopic characteristics of nuclear and radiological materials. These characteristics, when evaluated alone or in combination, become signatures that may reveal how and when the material was fabricated. The signatures contained in samples of dirt collected at two different uranium metal processing facilities in the United States were evaluated to determine uranium isotopic composition and compare results with processes that were conducted at these sites. One site refined uranium and fabricated uranium metal ingots for fuel and targets and the other site rolled hot forged uranium and other metals into dimensional rods. Unique signatures were found that are consistent with the activities and processes conducted at each facility and establish confidence in using these characteristics to reveal the provenance of other materials that exhibit similar signatures.  相似文献   

3.
Uranium (U) and thorium (Th) isotopes and their several radioactive descendants found in soil, rock, water, plants, air, etc., contribute to the natural radiation exposure of the population. Phosphate rocks are really rich natural sources of uranium and thorium among the other minerals forming the earth's crust. U and Th concentrations in some Egyptian phosphate samples were determined using a nuclear track registration methodology and -ray spectroscopy. The resulting latent tracks from all -decaying isotopes in both U and Th series were recorded in plastic detectors. A uniquely sensitive polycarbonate CR-39 nuclear detector was used. Results showed that the U and Th concentration in the samples studied range from about 4.0 up to 35.0 ppm and from 11.0 to 124.0 ppm, respectively. Results are discussed within the frame work of track formation methodology in plastic and -ray spectroscopic analysis.  相似文献   

4.
A new procedure for the radiochemical measurements of thorium, uranium and plutonium in atmospheric samples is described. Analysis involves coprecipitation of these actinides with iron hydroxide from a 40-to 50-dm3 sample of rainwater, followed by radiochemical separation and purification procedures by the use of ion exchange chromatography (Dowex AG1×8) and solvent extraction. The new procedure enables one to determine the isotopes of thorium, uranium and plutonium, which are found in rainwater at extremely low concentrations, with a chemical yield ranging from 60 to 80%.  相似文献   

5.
Summary The paper presents a procedure to prepare soil samples for U and Th isotope measurement by alpha-spectrometry after coprecipitation with LaF3. In this procedure the reduction of U(VI) to U(IV) was performed by Zn metal in 4M HCl solution. The recoveries of chemical separation equal to eU-chemistry = 78±4% for uranium and eTh-chemistry = 82±4% for thorium. Canberra alpha-spectrometer was used with PIPS detectors of A-1200-37-AM Model of 1200 mm2 active area. The counting efficiency of the measuring system equals to ecounting = 18% and the total efficiencies were eU = ecounting .eU-chemistry = 14.0±0.7% for uranium and eTh = ecounting .eTh-chemistry = 14.7±0.7% for thorium. The recoveries of chemical separation were rather high (about 80%), that leads to the use of a small weight of soil sample (about 0.5 g). The efficiencies were also stable, that allows analyzing the soil sample without using radiotracers. They are advantages of the sample preparation procedure of this work.  相似文献   

6.
A combination of two techniques, PIXE (particle induced x-ray emission) and RBS (Rutherford backscattering), is proposed as an analytical tool to measure uranium and thorium in environmental and biological samples and in the study of the micro-distribution of uranium is low Z matrices such as biological tissue.Work supported by U.S. Department of Energy Contracts DE-AC02-76CH-00116 (MC, KWJ) and DE-AC02-76EV-00119 (NPS, MEW). One of us (ASP) is grateful to FINEP (Financiadora de Estudos e Projetos) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Technológico).  相似文献   

7.
Uranium, thorium and potassium contents in 16 different rock samples from various sites in Republic of Yemen were determined using three different techniques of analysis: γ-spectrometry, Instrumental neutron activation analyses (INAA) and X-ray fluorescence (XRF). The concentration range for thorium, uranium and potassium were found to be from 9,810 ± 272 to 3.6 ± 1.3 ppm, 1,072 ± 40 to 1.2 ± 0.7 ppm and 11 ± 1 to 0.26 ± 0.05%, respectively.  相似文献   

8.
Zircon is an accessory mineral, which occurs at low concentrations in a wide variety of rocks and is a host for hafnium, rare-earth elements (REE) and radio active elements like uranium and thorium. The presence of uranium in zircon has led to its increased use in the age determination of rocks. Zirconium is also considered as a strategic, hi-tech element because of its various applications, especially in the manufacturing, nuclear and aerospace industries. Analysis of zircon constitutes one of the tough tasks in analytical chemistry as it is a highly resistant mineral and it is extremely difficult to achieve its complete decomposition. In the present work, inductively coupled plasma mass spectrometry has been applied to the determination of hafnium, REE, uranium and thorium in zircon samples using two different sample dissolution procedures, one employing sodium peroxide fusion and another using a fusion mixture of KHF2 and NaF in 3:1 ratio. Some selected zircon samples originating from different places on the eastern coast of India have been analysed by both the methods and values obtained by both methods were found to be in good agreement with each other. Though a number of international zircon reference materials are available, certified or even proposed values are available only for a very few elements in them. Two zircon reference materials have also been analysed by both methods and usable values have been proposed in this paper. The values obtained by both methods were found to compare well with each other and as well with those reported in literature. The % RSD for all the estimated elements varied from 1.0 to 12.0% at different concentration levels.  相似文献   

9.
Radioisotopes of uranium, thorium and plutonium in water, soil and fertilizer samples, have been chemically separated and determined by alpha-spectrometry method. Radiochemical procedure involving ion-exchange, enabled to determine these isotopes in very low concentrations (under 50 Bq/g).232U,229Th and238Pu were used as a tracers for radiochemical yield recoveries (up to 90%). Thin layer sources have been obtained by electrodeposition.  相似文献   

10.
An extractive pellet fluorimetry determination of trace uranium in thorium rich samples has been developed. This is based upon a solvent extraction system which completely separates both the elements uranium and thorium from each other. Thorium as a neutral complex with 2,3-dihydroxynaphthalene at pH 4–6 is extracted into ethylacetate and then uranium-2,3-dihydroxynaphthalene anionic complex is extracted into another batch of ethylacetate at pH 11–12 under the influence of a counter cation, cetyltrimethylammonium ion. This method has been applied for the determination of trace uranium in synthetic nuclear grade thorium oxide and thorium rich mineralized rock with high degree of accuracy and precision.  相似文献   

11.
12.
The electronic properties of the metal atoms encaged in a fullerence cage were investigated using synchrotron X-ray photoelectron spectroscopy. Systematic variations in photoemission of valence band of Gd@C82, Gd@C82(OH)12, and Gd@C82(OH)22 were observed in Gd 5p levels. The results suggest that the electronic properties of the inner metal atom can be efficiently modulated by surface chemistry of the fullerene cage.  相似文献   

13.
14.
Cathodic depositions of uranium and thorium were carried out from a number of baths containing the metal salts, and complexing agents. A reducing agent was also present to prevent oxidation of the element. The deposition was also carried out at controlled pH. The current density ranged from 50 to 200 mA cm–2. The purity of the deposited metals was better than 99.7%. The mechanism of formation of uranium and thorium is proposed and discussed.  相似文献   

15.
A routine procedure has been developed for the simultaneous determination of uranium and thorium in high concentration thorium ores. INAA is used to determine the uranium and thorium concentration. However, for very low concentrations of uranium a radiochemical procedure based on the use of NPy/benzene as an extractant has to be employed. The precision and accuracy of the method has been determined by analyzing IAEA and NBL standard thorium/uranium ores.  相似文献   

16.
A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2·1012 n·cm?2·sec?1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by β-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively.  相似文献   

17.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

18.
19.
Results are repoerted for238U,234U,232Th, and230Th determinations in 19 rock samples from a uranium mine, performed independently, byb three different laboratories. Uranium and thorium isotopoic activities were determkined by alpha spectrometry, after different pre-concentration and counting sample preparation techniques., Additionally, total concentrations of uranium were determined by fluorimetry and gamma spectreometry. the folloing conclusions could be drawn from this intercomparison test: (1) The results for238U specific activity agreed with the amjority of results within 10%. Lincar correlation coefficients between the three data sets were 0.999. However, for a few samples of much higher uranium concentrations, large deviations were observed, indicating problems of, sample heterogencity. (2) For the234U/238U activity ratio data, a still closer agreement was obtained (5%), as computation of the activity ratios did not, require information on the yield of the used tracer spike (232U). (3) The results for232Th specific activities and230Th/234U activity ratios showed larger deviastions between the three laboratories (typically up to 15%, in some cases still ore). Different Th-isotopes (228Th,234Th and229Th) have been used as yield tracers. The data indicates, however, that the observed deviations are not simply a consequence of a systematic difference in the calibration of the different spikes, but, probably cased by other errors such as incomplete sample dissolution, sample heterogencity, tec. The limitations of alpha spectrometry will be discussed and an application of the developed methods shown.  相似文献   

20.
It is today a most common phenomenon that ultratrace analyses for quality control have to be carried out in industrial laboratories far from optimum conditions and in spite of the lack of best suited equipment. It was against this setting that the development of a method for the photometric determination of uranium- and thorium-traces in glasses with arsenazo III was envisaged. The method basically consists of a digestion with HF/HClO4/H3BO3, an extractive preseparation of interfering Ti- and Zr-traces with TTFA/hexanol/CCl4, an extractive separation of U- and Th-traces with TTFA/TBP/toluene and a final determination of thorium alone (in the presence of photometrically inactive U(VI)) and the sum of Th+U(IV) with arsenazo III.The concentration of uranium is calculated from the difference of the sum of both traces minus the thorium content. Uranium can be determined with nearly the same sensitivity as thorium after reduction to uranium(IV). The most suitable reducing agent for uranium(VI) to uranium(IV) is a mixture of Na2S2O4/CH2O. An optimization of the arsenazo III concentration for the determination of thorium and uranium yielded an optimal concentration of 80 mg/L arsenazo III: For the reduction of uranium concentrations of 2 g/L of Na2S2O4 and 3.2 g/L CH2O proved to be optimal. Interferences of this photometric end determination by titanium, zirconium and scandium were investigated quantitatively. The permissible excess for these elements was found to be so low that a trace-trace separation method proved to be necessary. Separation methods were checked for the separation of the matrix components of the investigated glasses from thorium and uranium. One of these methods was suitable after optimization: thorium and uranium are extracted with TTFA/TBP/toluene from a solution containing hydrochloric acid. Back-extraction is carried out with HCl/KMnO4. For the separation of titanium- and zirconium-cotraces an extra separation method had to be developed: they are extracted with TTFA/hexanol/CCl4 before the separation of uranium- and thorium-traces from the matrix. The glasses were digested with HF/HX. Fluoride from the hydrofluoric acid is incompletely removed by evaporation and interferes with the extraction of uranium and thorium due to complex formation. Depending on the digestion variant used 162 to 0.23 mg F remain in the residue of the digestion of a 5 g sample. This interference was eliminated by a digestion with HF/HClO4/H3BO3 and masking of residual fluoride with AlCl3.Abbreviations used Arsenazo III 1,8-Dihydroxynaphthalene-3,6-disulphonic acid-2,7-bis [(azo-2)-phenylarsonic acid] - Arsenazo I 1,8-Dihydroxynaphthalene-3,6-disulphonic acid-2-[(azo-2)-phenylarsonic acid] - BPAP 2- (5-Bromo-2-pyridy] azo)-5-diethylaminophenol - EDTA Ethylenediaminetetraacetic acid - HX Designation for a high boiling mineral acid - FAAS Flame atomic absorption spectrometry - FOD 1,1,1,2,3,3,-Heptafluor-7, dimethyl-4,6-octanedione - GFAAS Graphite furnace atomic absorption spectrometry - ICP-MS Inductively coupled plasma — mass spectrometry - ICP-OES Inductively coupled plasma — optical emission spectrometry - LAS Liquid absorption spectrophotometry (classical photometry) - m(Th) Mass of thorium - NAA Neutron activation analysis - pKDiss Negative logarithm to the base 10 of the dissociation constant of a complex - TBP Tri-(n-butyl)-phosphate - TOPO Tri(n-octyl)-phosphinoxide - TTFA 1-(2-Thenoyl)-3,3,3-trifluoroacetone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号