首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.  相似文献   

2.
不同分子筛的氮氩分离性能   总被引:1,自引:0,他引:1  
关莉莉  蒋化  段连运  谢有畅 《化学学报》2002,60(7):1235-1241
采用水溶液离子交换法制备了不同离子交换的13X和4A分子筛,并在25℃下测 定了它们的静态吸附等温线和动态穿透曲线。研究发现,Ca~(2+)离子和Li~+离子 交换的13X和4A分子筛对氮的吸附性能都明显优于其相应的钠型分子筛,而它们对 氩的吸附量变化不大,说明这两种离子交换的分子筛是较好的氮氩分离吸附剂。从 动态吸附的结果来看,所研究的各种分子筛都有一个最优的吸附分离压力,在本论 文研究的压力范围内,这个最优压力在0.6MPa附近。通过穿透曲线推算出的混合气 体吸附量和纯气体吸附量的对比可以得出,对于氮氩吸附选择性较高的分子筛,氮 的存在对氩的吸附量有较大的影响。  相似文献   

3.
Ca2+交换的几种分子筛的氮氩分离性能   总被引:1,自引:0,他引:1  
采用水溶液离子交换法制备了Ca2+交换的4A、13X和LSX分子筛,并在25 ℃下测定了它们的静态吸附等温线和动态穿透曲线.研究发现, Ca2+交换的4A、13X和LSX分子筛对氮的吸附性能都明显优于其相应的钠型分子筛,而它们对氩的吸附量变化不大,说明Ca2+交换的这三种分子筛是较好的氮氩分离吸附剂.从动态吸附的结果来看,所研究的各种分子筛都有一个最优的吸附分离压力,在本论文研究的压力范围内,这个最优压力在0.6 MPa附近.由穿透曲线可推算出混合气体的吸附量,通过氮和氩在混合气体中的吸附量和相应纯气体吸附量的对比可以得出,对于氮氩吸附选择性较高的分子筛,氮的存在对氩的吸附量有较大的影响.  相似文献   

4.
Metal-organic frameworks (MOFs) are thought to be a set of promising hydrogen storage materials; however, little is known about the interactions between hydrogen molecules and pore walls as well as the diffusivities of hydrogen in MOFs. In this work, we performed a systematic molecular simulation study on the adsorption and diffusion of hydrogen in MOFs to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen in MOFs, and the effect of the organic linkers becomes evident with increasing pressure. The hydrogen storage capacity of MOFs is similar to carbon nanotubes, which is higher than zeolites. Diffusion of hydrogen in MOFs is an activated process that is similar to diffusion in zeolites. The information derived in this work is useful to guide the future rational design and synthesis of tailored MOF materials with improved hydrogen adsorption capability.  相似文献   

5.
活化温度对CuBTC催化CO氧化反应性能的影响(英文)   总被引:2,自引:0,他引:2  
考察了金属有机骨架材料CuBTC(BTC为均苯三酸)催化CO氧化的反应性能,发现CuBTC对CO氧化反应表现出良好的催化活性,且CuBTC样品的活化温度对其催化活性的影响很大.原位漫反射红外光谱、粉末X射线衍射、扫描电镜、热重分析和差示扫描量热结果表明,CO在CuBTC骨架中不饱和金属位点上的配位是加速CO氧化的主要原因,且这种不饱和金属位点越多,其催化活性越高.  相似文献   

6.
CuBTC (Copper(II) benzene-1,3,5-tricarboxylate) is one of the most well characterized and widely studied metal organic framework (MOF) structures for potential use in industrial applications due to its relatively easy synthesis and excellent textural and physicochemical properties. In this comprehensive review, a different perspective on MOF materials for future sustainability is presented by critically examining the recent works that have considered the synthesis and adsorption/catalytic applications of CuBTC as a model case.  相似文献   

7.
8.
Recent years have seen the development of a new class of porous coordination polymers known collectively as metal organic framework materials (MOFs). This review outlines recent progress in understanding how adsorption characteristics of these systems differ from rigid classical sorbents such as activated carbon and zeolites. Gas/vapor adsorption studies for characterization of the porous structures of MOF materials are reviewed and differences in adsorption characteristics based on detailed measurement of equilibrium and dynamical sorption behavior, compared with previous generations of sorbents, are highlighted. The role of framework flexibility and specific structural features, such as windows and pore cavities, within the MOF porous structures are discussed in relation to adsorption mechanisms.  相似文献   

9.
The development of new microporous materials for adsorption separation processes is a rapidly growing field because of potential applications such as carbon capture and sequestration (CCS) and purification of clean-burning natural gas. In particular, new metal-organic frameworks (MOFs) and other porous coordination polymers are being generated at a rapid and growing pace. Herein, we address the question of how this large number of materials can be quickly evaluated for their practical application in carbon dioxide separation processes. Five adsorbent evaluation criteria from the chemical engineering literature are described and used to assess over 40 MOFs for their potential in CO(2) separation processes for natural gas purification, landfill gas separation, and capture of CO(2) from power-plant flue gas. Comparisons with other materials such as zeolites are made, and the relationships between MOF properties and CO(2) separation potential are investigated from the large data set. In addition, strategies for tailoring and designing MOFs to enhance CO(2) adsorption are briefly reviewed.  相似文献   

10.
Understanding the adsorption and mobility of metal-organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au(8), Pd(8), and Au(4)Pd(4) we find that the organic part of the MOF is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster's adsorption energy and diffusion barrier is established, confirming that Au clusters are highly mobile in the MOF-74 framework and Pd clusters are less mobile.  相似文献   

11.
Metal-organic framework (MOF) materials pose an interesting alternative to more traditional nanoporous materials for a variety of separation processes. Separation processes involving nanoporous materials can be controlled by either adsorption equilibrium, diffusive transport rates, or a combination of these factors. Adsorption equilibrium has been studied for a variety of gases in MOFs, but almost nothing is currently known about molecular diffusion rates in MOFs. We have used equilibrium molecular dynamics (MD) to probe the self-diffusion and transport diffusion of a number of small gas species in several MOFs as a function of pore loading at room temperature. Specifically, we have studied Ar, CH4, CO2, N2, and H2 diffusion in MOF-5. The diffusion of Ar in MOF-2, MOF-3, and Cu-BTC has been assessed in a similar manner. Our results greatly expand the range of MOFs for which data describing molecular diffusion is available. We discuss the prospects for exploiting molecular transport properties in MOFs in practical separation processes and the future role of MD simulations in screening families of MOFs for these processes.  相似文献   

12.
We present a new approach for modeling adsorption in metal-organic frameworks (MOFs) with unsaturated metal centers and apply it to the challenging propane/propylene separation in copper(II) benzene-1,3,5-tricarboxylate (CuBTC). We obtain information about the specific interactions between olefins and the open metal sites of the MOF using quantum mechanical density functional theory. A proper consideration of all the relevant contributions to the adsorption energy enables us to extract the component that is due to specific attractive interactions between the π-orbitals of the alkene and the coordinatively unsaturated metal. This component is fitted using a combination of a Morse potential and a power law function and is then included into classical grand canonical Monte Carlo simulations of adsorption. Using this modified potential model, together with a standard Lennard-Jones model, we are able to predict the adsorption of not only propane (where no specific interactions are present), but also of propylene (where specific interactions are dominant). Binary adsorption isotherms for this mixture are in reasonable agreement with ideal adsorbed solution theory predictions. We compare our approach with previous attempts to predict adsorption in MOFs with open metal sites and suggest possible future routes for improving our model.  相似文献   

13.
As emerging two-dimensional materials, metal-organic framework(MOF) nanosheet composites possess many unique physical and chemical properties, thus being expected to be widely applied in gas separation and adsorption, energy conversion and storage, heterogeneous catalysis, sensing as well as biomedicine. In this review, we first introduce the methods for integrating MOF nanosheets with other materials to prepare multifunctional composites. Next, the applications of MOF nanosheet composites in ve...  相似文献   

14.
Gas separation efficiencies of three zeolite membranes (Faujasite, MFI, and Chabazite) have been examined using the method of molecular dynamics. Our investigation has allowed us to study the effects of pore size and structure, state conditions, and compositions on the permeation of two binary gas mixtures, O(2)N(2) and CO(2)N(2). We have found that for the mixture components with similar sizes and adsorption characteristics, such as O(2)N(2), small-pore zeolites are not suited for separations, and this result is explicable at the molecular level. For mixture components with differing adsorption behavior, such as CO(2)N(2), separation is mainly governed by adsorption and small-pore zeolites separate such gases quite efficiently. When selective adsorption takes place, we have found that, for species with low adsorption, the permeation rate is low, even if the diffusion rate is quite high. Our results further indicate that loading (adsorption) dominates the separation of gas mixtures in small-pore zeolites, such as MFI and Chabazite. For larger-pore zeolites such as Faujasite, diffusion rates do have some effect on gas mixture separation, although adsorption continues to be important. Finally, our simulations using existing intermolecular potential models have replicated all known experimental results for these systems. This shows that molecular simulations could serve as a useful screening tool to determine the suitability of a membrane for potential separation applications.  相似文献   

15.
A metal-organic framework (MOF) with helical channels has been constructed by bridging helical chain secondary building units with 2,6-di-p-carboxyphenyl-4,4'-bipyridine ligands. The activated MOF shows permanent porosity and gas adsorption selectivity. Remarkably, the MOF exhibits a facile transition from micro- to meso-porosity.  相似文献   

16.
采用水溶液离子交换法制备了高Li+交换度的4A、13X和LSX分子筛,并在25 ℃下测定了它们的静态吸附等温线和动态穿透曲线.研究发现,高Li+离子交换度的4A、13X和LSX分子筛都具有较大的氮吸附容量和较高的氮氩分离选择性,说明高Li+离子交换度的4A、13X和LSX分子筛是较好的氮氩分离吸附剂.从动态穿透曲线结果来看,所研究的三种分子筛都有一个最优的吸附分离压力,在本文研究的压力范围内,这个最优压力在0.6 MPa附近.对比高锂交换度的三种分子筛,以高锂交换度的LSX分子筛的氮氩吸附分离性能最好.  相似文献   

17.
Adsorption properties of synthesized metal-organic frameworks based on 1,4-dicarboxylate ligands and zinc ions were studied. It was shown that the adsorption properties of these metal-organic frameworks in relation to water and benzene are much higher than those for the known adsorbents: KT-1 and KT-2 coals, USY and ZSM-5 zeolites, and pentasil.  相似文献   

18.
Hydrogen is a green energy carrier. Chemical looping reforming of biomass and its derivatives is a promising way for hydrogen production. However, the removal of carbon dioxide is costly and inefficient with the traditional chemical absorption methods. The objective of this article is to find a new material with low energy consumption and high capacity for carbon dioxide storage. A metal organic framework (MOF) material (e.g., CuBTC) was prepared using the hydrothermal synthesis method. The synthesized material was characterized by X-ray diffraction, ?196 °C N2 adsorption/desorption isotherms, and thermogravimetry analysis to obtain its physical properties. Then BET, t-plot, and density functional theory (DFT) methods were used to acquire its specific surface area and pore textural properties. Its carbon dioxide adsorption capacity was evaluated using a micromeritics ASAP 2000 instrument. The results show that the decomposition temperature of the synthesized CuBTC material is 300 °C. Besides, high CO2 adsorption capacity (4 mmol g?1) and low N2 adsorption capacity were obtained at 0 °C and atmospheric pressure. These results indicate that the synthesized MOF material has a high efficiency for CO2 separation. From this study, it is expected that this MOF material could be used in adsorption and separation of carbon dioxide in chemical looping reforming process for hydrogen production in the near future.  相似文献   

19.
Electrostatic interactions are a critical factor in the adsorption of quadrupolar species such as CO(2) and N(2) in metal-organic frameworks (MOFs) and other nanoporous materials. We show how a version of the semiempirical charge equilibration method suitable for periodic materials can be used to efficiently assign charges and allow molecular simulations for a large number of MOFs. This approach is illustrated by simulating CO(2) and N(2) adsorption in ~500 MOFs; this is the largest set of structures for which this information has been reported to date. For materials predicted by our calculations to have promising adsorption selectivities, we performed more detailed calculations in which accurate quantum chemistry methods were used to assign atomic point charges, and molecular simulations were used to assess molecular diffusivities and binary adsorption isotherms. Our results identify two MOFs, experimentally known to be stable upon solvent removal, that are predicted to show no diffusion limitations for adsorbed molecules and extremely high CO(2)/N(2) adsorption selectivities for CO(2) adsorption from dry air and from gas mixtures typical of dry flue gas.  相似文献   

20.
Porous metal-organic frameworks (MOFs) have emerged over the past decade as an important new class of materials possessing permanent porosities, uniform pore structures, high surface areas, and low crystal densities. MOFs are regarded as promising solid adsorbents for gas storage and separation but have not reached an applied level yet. One impediment to MOF applications is incomplete adsorption information and lack of structure-property relationships. In this paper, we present pure-component adsorption equilibrium data for methane and carbon dioxide at different temperatures on a new three-dimensional Zn-MOF material built from the ligand 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB) with Zn metal. The data are described by Toth’s equation and Dubinin-Astakhov (D-A) equation. Thermodynamic properties including isosteric heat of adsorption are estimated based on the two models and comparisons are made with other adsorbents. The smaller pore diameters of Zn-MOF compared to related structures MOF-177 and UMCM-1 lead to greater adsorption loadings at 1 bar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号