首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inertial forces acting on two cylinders and two spheres have been calculated. The cylinders or spheres are of the same radius and zeta potential, and arbitrarily oriented in an electric field. It is found that when two particles are aligned perpendicular to the direction of the electric field, the force between them along the line of the centers is attractive. When they are along the direction of the electric field, the force between them along the line of the centers is repulsive. On a pair of arbitrarily oriented particles, the force perpendicular to the line of the centers tends to rotate the particles around the midpoint between the particle centers such that the pair is aligned normal to the applied electric field. The stable equilibrium orientation of a pair of particles and the attractive interaction forces between the particles when they are stably orientated may give rise to aggregation of particles during electrophoretic motion of a suspension.  相似文献   

2.
In this paper the electrophoretic mobility and the electrical conductivity of concentrated suspensions of spherical colloidal particles have been numerically studied under arbitrary conditions including zeta potential, particle volume fraction, double-layer thickness (overlapping of double layers is allowed), surface conductance by a dynamic Stern layer model (DSL), and ionic properties of the solution. We present an extensive set of numerical data of both the electrophoretic mobility and the electrical conductivity versus zeta potential and particle volume fraction, for different electrolyte concentrations. The treatment is based on the use of a cell model to account for hydrodynamic and electrical interactions between particles. Other theoretical approaches have also been considered for comparison. Furthermore, the study includes the possibility of adsorption and lateral motion of ions in the inner region of the double layers (DSL model), according to the theory developed by C. S. Mangelsdorf and L. R. White (J. Chem. Soc. Faraday Trans.86, 2859 (1990)). The results show that the correct limiting cases of low zeta potentials and thin double layers for dilute suspensions are fulfilled by our conductivity formula. Moreover, the presence of a DSL causes very important changes, even dramatic, on the values of both the electrophoretic mobility and the electrical conductivity for a great range of volume fractions and zeta potentials, specially when double layers of adjacent cells overlap, in comparison with the standard case (no Stern layer present). It can be concluded that in general the presence of a dynamic Stern layer causes the electrophoretic mobility to decrease and the electrical conductivity to increase in comparison with the standard case for every volume fraction, zeta potential, and double-layer thickness.  相似文献   

3.
Colloidal doublets formed from spheres with different zeta potentials rotate as dipoles into alignment with an applied electric field. The rate of rotation is proportional to the difference in the electrophoretic mobilities of the isolated spheres times a dimensionless rotation coefficient (N). The coefficient N, which describes the interaction effects between the particles, has been previously calculated numerically under the assumptions of infinitesimal double layers and uniform zeta potentials on each sphere. These numerical values have been used to interpret experiments which probe the tangential forces between two particles almost in contact. But since these assumptions might not hold for the small gaps in actual experiments, it is important to know how N is affected when the double layers of two spheres overlap or when the charge is nonuniformly distributed on the sphere surfaces (especially in the gap region). Using an extension of the Lorentz reciprocal theorem for Stokes flow, we have developed a semi-analytical solution for N which is valid in the asymptotic limit of small (but finite) gaps of fluid between the spheres. For infinitesimal double layers and uniform zeta potentials, this result shows that N is weakly singular in the gap between the spheres. Our method also enables us to examine the effects of overlapping double layers and nonuniform zeta potentials in the gap region, and an important result of this paper is that even when these effects are considered, the result for infinitesimal double layers and uniform zeta potentials remains a very good approximation.  相似文献   

4.
Cell model calculations for the electrophoretic mobility, electrical conductivity and sedimentation potential in concentrated suspensions of colloidal particles with low zeta potentials are reviewed with particular emphasis on an Onsager relation between sedimentation potential and electrophoretic mobility. A general Onsager relation is derived on the basis of the thermodynamics of irreversible processes. This relation, which involves the ratio of the electrical conductivity K* of the suspension to the conductivity Kinfinity in the absence of the particles, reproduces the Onsager relation derived from cell model calculations at low zeta potentials, where K*/Kinfinity becomes (1 - phi)/(1 + phi/2), phi being the particle volume fraction.  相似文献   

5.
Ohshima H 《Electrophoresis》2002,23(13):1995-2000
A general expression is derived for the electrophoretic mobility of a spherical charged colloidal particle covered with an uncharged polymer layer in an electrolyte solution in an applied electric field for the case where the particle zeta potential is low. It is assumed that electrolyte ions as well as water molecules can penetrate the polymer layer. Approximate analytic expressions for the electrophoretic mobility of particles carrying low zeta potentials are derived for the two extreme cases in which the particle radius is very large or very small.  相似文献   

6.
A charged colloidal particle which is suspended in an electrolyte solution drifts due to an external voltage application. For direct currents, particle motion is affected by two separate mechanisms: electro-osmotic slip associated with the electric field and chemi-osmotic slip associated with the inherent salt concentration gradient in the solution. These two mechanisms are interrelated and are of comparable magnitude. Their combined effect is demonstrated for cation-exchange electrodes using a weak-current approximation. The linkage between the two mechanisms results in an effectively modified mobility, whose dependence on the particle zeta potential is nonlinear. At small potentials, the electro-osmotic mechanism dominates and the particle migrates according to the familiar Smoluchowski mobility, linear in the electric field. At large zeta potentials, chemiosmosis becomes dominant: for positively charged particles, it tends to arrest motion, leading to mobility saturation; for negatively charged particles, it enhances the drift, effectively leading to a shifted linear dependence of the mobility on the zeta potential, with twice the Smoluchowski slope.  相似文献   

7.
A relation between the dynamic electrophoretic mobility of spherical colloidal particles in a concentrated suspension and the colloid vibration potential (CVP) generated in the suspension by a sound wave is obtained from the analogy with the corresponding Onsager relation between electrophoretic mobility and sedimentation potential in concentrated suspensions previously derived on the basis of Kuwabara's cell model. The obtained expression for CVP is applicable to the case where the particle zeta potential is low, the particle relative permittivity is very small, and the overlapping of the electrical double layers of adjacent particles is negligible. It is found that CVP shows much stronger dependence on the particle volume fraction φ than predicted from the φ dependence of the dynamic electrophoretic mobility. It is also suggested that the same relation holds between the electrokinetic sonic amplitude of a concentrated suspension of spherical colloidal particles and the dynamic electrophoretic mobility. Copyright 1999 Academic Press.  相似文献   

8.
The small gap distance separating a spherical colloidal particle in electrophoretic motion from a planar nonconducting surface is a required parameter for calculating its electrophoretic mobility. In the presence of an externally applied electric field, this gap distance is determined by balancing the van der Waals, electrical double layer interaction, and gravitational forces with a dielectrophoretic (DEP) force. Here, the DEP force was determined analytically by integration of the Maxwell stress over the surface of the particle. The account of this force showed that its previous omission from the analysis always resulted in underpredicted gap distances. Furthermore, the DEP force dominated under conditions of low particle density or high electric field strength and led to much higher gap distances on the order of a few microns. In one particular case, a combination of low particle density and small particle size produced two possible equilibrium gap distances for the particle. However, the particle was unstable in the second equilibrium position when subjected to small perturbations. In general, larger particles had smaller gap sizes. The effects of four other parameters on gap distance were studied, and gap distances were found to increase with lower particle density, higher electric field strength, higher particle and wall zeta potentials, and lower Hamaker constants. Retardation effects on van der Waals attraction were considered.  相似文献   

9.
When the electrophoretic mobility of a particle in an electrolyte solution is measured, the obtained electrophoretic mobility values are usually converted to the particle zeta potential with the help of a proper relationship between the electrophoretic mobility and the zeta potential. For a particle with constant surface charge density, however, the surface charge density should be a more characteristic quantity than the zeta potential because for such particles the zeta potential is not a constant quantity but depends on the electrolyte concentration. In this article, a systematic method that does not require numerical computer calculation is proposed to determine the surface charge density of a spherical colloidal particle on the basis of the particle electrophoretic mobility data. This method is based on two analytical equations, that is, the relationship between the electrophoretic mobility and zeta potential of the particle and the relationship between the zeta potential and surface charge density of the particle. The measured mobility values are analyzed with these two equations. As an example, the present method is applied to electrophoretic mobility data on gold nanoparticles (Agnihotri, S. M.; Ohshima, H.; Terada, H.; Tomoda, K.; Makino, K. Langmuir 2009, 25, 4804).  相似文献   

10.
An optical method is presented that allows simultaneous determination of the diffusion constant and electrophoretic mobility of individual charged particles with radius down to 0.2 mum. By this method the size dependency of the effective charges and zeta potentials of individual particles can be investigated, as well as interparticle interactions and Brownian motion in confined geometries. The diffusion constant and mobility are determined from the power spectrum of the particle speed in a sinusoidal electrical field. The accuracy of the method was tested on PMMA spheres of known size in water. Experiments have been carried out on charged pigment particles with low concentration in a nonaqueous medium containing a charging agent. The mobility is found to be independent of the particle size.  相似文献   

11.
The electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity with an arbitrary thickness of the electric double layers adjacent to the particle and cavity surfaces is analyzed at the quasisteady state when the zeta potentials associated with the solid surfaces are arbitrarily nonuniform. Through the use of the multipole expansions of the zeta potentials and the linearized Poisson-Boltzmann equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately solved. The modified Stokes equations governing the fluid velocity field are dealt with using a generalized reciprocal theorem, and explicit formulas for the electrophoretic and angular velocities of the particle valid for all values of the particle-to-cavity size ratio are obtained. To apply these formulas, one only has to calculate the monopole, dipole, and quadrupole moments of the zeta potential distributions at the particle and cavity surfaces. In some limiting cases, our result reduces to the analytical solutions available in the literature. In general, the boundary effect on the electrophoretic motion of the particle is a qualitatively and quantitatively sensible function of the thickness of the electric double layers relative to the radius of the cavity.  相似文献   

12.
An algorithm is presented for calculating the colloidal heterointeraction double-layer energy between spheres whose surface potentials may be very high. In most systems of industrial and biological importance, heterointeractions between particles with high surface potentials are often encountered, and the energy of interacting particles is needed in estimating the stability of such suspensions. The electrical double-layer energy of interaction is computed from the electrical potential distribution between and around the interacting particles and necessitates the solution of the non-linear Poisson-Boltzmann equation. In this study, the double-layer potential between two plates is assumed to be the sum of the potentials of two overlapping double-layers. This approach reproduces the exact double-layer potential distribution accurately. Although it makes use of empiricism, it offers advantages in obtaining the double-layer potential distribution more efficiently.  相似文献   

13.
In classical electrokinetics, the electrophoretic velocity of a dielectric particle is a linear function of the applied electric field. Theoretical studies have predicted the onset of nonlinear electrophoresis at high electric fields because of the nonuniform surface conduction over the curved particle. However, experimental studies have been left behind and are insufficient for a fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in this work a systematic experimental study of the effects of buffer concentration, particle size, and particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear electrophoretic particle velocity is found to exhibit a 2(±0.5)-order dependence on the applied electric field, which appears to be within the theoretically predicted 3- and 3/2-order dependences for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic particle mobility increases with decreasing buffer concentration (for the same particle) and particle size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles with similar sizes). These observations are all consistent with the theoretical predictions for high electric fields.  相似文献   

14.
The interaction force between a very hydrophobic polymer surface and colloidal silica particles with a roughness of 10–15 nm has been measured in aqueous solutions of KOH and KCl using an atomic force microscope. The interaction can be described according to the DLVO theory by an electrical double-layer force that is repulsive at long distances and attractive at short distances and an attractive van der Waals force. The electrical double-layer potentials are compared to the zeta potentials of Teflon AF and the silica spheres. The roughness of the silica particles leads to an underestimation of the short-range attraction and the surface potential. Both KCl and KOH solutions affect the potential of the interacting surfaces. OH ions that adsorb preferentially to the Teflon AF surface create higher potentials than Cl ions. Range and strength of the attractive interaction are not affected by KCl solutions but reduced by addition of KOH. This can be explained by decreasing potential differences between the silica sphere and Teflon AF with increasing KOH concentration. In addition, the preferential adsorption of OH ions may lead to a reduction of the van der Waals interaction. The presence of nanobubbles, too, might play a role.  相似文献   

15.
With AWPS (Amplitude Weighted Phase Structuration), a new signal processing scheme is demonstrated for the simultaneous determination of zeta potentials and particle sizes. It allows the measurements of a small electrophoretic mobility in the presence of large particle diffusion and constant velocity, e. g. due to thermal convection. Laser light scattering techniques instead of the former methods determine electrophoretic velocity more objectively and precisely. The applicability of laser measurement techniques by analysis of the frequency spectrum is limited for particles ?50 nm or very low potentials, because of the broadening of the spectral peak by Brownian motion. In contrast to AWPS a separation of the various kinds of collective motion is not possible. The presented results demonstrate that this separation is of considerable significance in the acquisition of reliable values. Additionally the novel signal processing scheme allows a significant increase in sensitivity and therefore the application of an oscillating field (50–100 Hz) with a very small field strength. The system is feasible for particle sizes in the range of a few nm up to several μm. Its high resolution allows experiments with low fields or with small zeta potentials, even in the critical particles size range of a few nanometers.  相似文献   

16.
The diffusiophoretic and electrophoretic motions of two colloidal spheres in the solution of a symmetrically charged electrolyte are analyzed using a method of reflections. The particles are oriented arbitrarily with respect to the electrolyte gradient or the electric field, and they are allowed to differ in radius and in zeta potential. The thickness of the electric double layers surrounding the particles is assumed to be small relative to the radius of each particle and to the gap width between the particles, but the effect of polarization of the mobile ions in the diffuse layer is taken into account. A slip velocity of fluid and normal fluxes of solute ions at the outer edge of the thin double layer are used as the boundary conditions for the fluid phase outside the double layers. The method of reflections is based on an analysis of the electrochemical potential and fluid velocity disturbances produced by a single dielectric sphere placed in an arbitrarily varying electrolyte gradient or electric field. The solution for two-sphere interactions is obtained in expansion form correct to O(r(12)(-7)), where r(12) is the distance between the particle centers. Our analytical results are found to be in good agreement with the available numerical solutions obtained using a boundary collocation method. On the basis of a model of statistical mechanics, the results of two-sphere interactions are used to analytically determine the first-order effect of the volume fraction of particles of each type on the mean diffusiophoretic and eletrophoretic velocities in a bounded suspension. For a suspension of identical spheres, the mean diffusiophoretic velocity can be decreased or increased as the volume fraction of the particles is increased, while the mean electrophoretic velocity is reduced with the increase in the particle concentration. Generally speaking, the particle interaction effects can be quite significant in typical situations. Copyright 2000 Academic Press.  相似文献   

17.
The electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution with large kappaa (where kappa= Debye-Hückel parameter and a= particle radius) tends to a nonzero constant value in the limit of high zeta potential. It is demonstrated that this is caused by the fact that counterions condensed near the highly charged particle surface do not contribute to the electrophoretic mobility and only co-ions govern the mobility. A simple method to derive the limiting electrophoretic mobility expression is given. The present method is also applied to cylindrical particles, showing that the leading term of the limiting electrophoretic mobility of a cylindrical particle in a transverse field with large kappaa is the same as that of a spherical particle. The electrophoretic mobility of a cylindrical particle in a tangential field, on the other hand, is proportional to the particle zeta potential and does not exhibit a constant limiting value for high zeta potentials.  相似文献   

18.
A microelectrophoretic investigation of different carbon blacks suspended in n-butanol was undertaken to observe the relationship between particle size and zeta potential of each black. Brownian motion was used to size an individual particle which was subsequently subjected to an electric field to obtain the zeta potential on the same particle. For three blacks studied, the zeta potentials were independent of size within the range measured.  相似文献   

19.
The electrostatic interaction between two ion-penetrable, charged spheroidal particles is examined theoretically. These particles can assume different sizes and an arbitrary spatial orientation. The electrical potential distribution is derived analytically under the Debye–Huckle condition. The results for two interaction spheres, one spheroidal particle and a planar surface, and rigid particles covered by an ion-penetrable membrane can be recovered as the special cases of the present general problem. We show that, for a fixed center-to-center distance between two particles, regardless of their relative sizes, the interaction free energy is the greatest if their major axes lie on the same line (head-to-head), and the smallest if their major axes are perpendicular to each other but not on the same plane (perpendicular).  相似文献   

20.
Previous studies have reported a lateral migration in particle electrophoresis through a straight rectangular microchannel. This phenomenon arises from the inherent wall‐induced electrical lift that can be exploited to focus and separate particles for microfluidic applications. Such a dielectrophoretic‐like force has been recently found to vary with the buffer concentration. We demonstrate in this work that the particle zeta potential also has a significant effect on the wall‐induced electrical lift. We perform an experimental study of the lateral migration of equal‐sized polystyrene particles with varying surface charges under identical electrokinetic flow conditions. Surprisingly, an enhanced focusing is observed for particles with a faster electrokinetic motion, which indicates a substantially larger electrical lift for particles with a smaller zeta potential. We speculate this phenomenon may be correlated with the particle surface conduction that is a strong function of particle and fluid properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号