首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we aimed to examine the spin-polarized electronic band structures, the local densities of states as well as the magnetism of ZnMnTe- and CdMnTe-diluted magnetic semiconductors (DMSs) in the ferromagnetic phase, and with 25% of Mn. The calculations are performed by the recent ab initio full potential augmented plane waves plus local orbitals (FP−L/APW+lo) method within the spin-polarized density-functional theory and the local spin density approximation. We have determined the exchange splittings produced by the Mn d states: Δx(d) and Δx(pd), and we found that the effective potential for the minority spin is more attractive than that for the majority spin. Also, we show the nature of the bonding from the charge spin-densities calculations, and we calculate the exchange constants N0α and N0β, which mimics a typical magneto-optical experiment. The calculated total magnetic moment is found to be equal to 5μB for both DMSs. This value indicates that every Mn impurity adds no hole carriers to the perfect ZnTe and CdTe crystals. Furthermore, we found that p–d hybridization reduces the local magnetic moment of Mn and produces small local magnetic moments on the nonmagnetic Te, Zn and Cd sites.  相似文献   

2.
High pressure induced phase transition of YSb and ScSb compounds have been studied using Density Functional Theory method within Generalized Gradient Approximation. It was found that the phase transition from the NaCl-type (B1) to a CsCl-type structure (B2) began to occur at around 29 GPa for YSb compound, agreeing well with available experiments and theoretical calculations. For ScSb compound it was suggested that structural phase transition from B1 to B2 will occur at about 40 GPa, differing greatly with experimental and theoretical results. The finding that the transition pressures increase with decreasing lattice constant in the NaCl-type structure for YSb and ScSb compounds was found to be similar to the phenomena observed for LnSb (Ln: lanthanide) compounds. Mulliken charge and overlap population analysis revealed that YSb and ScSb compounds in B1 structure show similar interaction between anion and cation, while in B2 structure a higher degree of covalency was found for ScSb than that in YSb. Also, DOS and band structure of these two compounds in B1 and B2 structures were presented and analyzed.  相似文献   

3.
We have investigated the energetic stability and equilibrium geometry of the adsorption of transition metal Fe atoms near the self-organized Bi lines on hydrogen passivated Si(0 0 1) surface. Our total energy results show that there is an attractive interaction between Fe adatoms along the Bi-nanolines. For the energetically most stable configuration, the Fe adatoms are seven-fold coordinated, occupying the subsurface interstitial sites aside the Bi-nanolines. With increased coverage, Fe atoms are predicted to form two parallel lines, symmetrically on both sides of the Bi line. Within our local spin-density functional calculations, we find that for the most stable geometries the Fe adatoms exhibit an antiferromagnetic coupling.  相似文献   

4.
Ab initio calculations based on density functional theory have been performed to study the dissolution and migration of helium, and the stability of small helium-vacancy clusters HenVm (n, m=0-4) in aluminum. The results indicate that the octahedral configuration is more stable than the tetrahedral. Interstitial helium atoms are predicted to have attractive interactions and jump between two octahedral sites via an intermediate tetrahedral site with low migration energy. The binding energies of an interstitial He atom and an isolated vacancy to a HenVm cluster are also obtained from the calculated formation energies of the clusters. We find that the di- and tri-vacancy clusters are not stable, but He atoms can increase the stability of vacancy clusters.  相似文献   

5.
First-principles calculations have been performed on the face-centered cubic (FCC) magnesium-transition metal (TM) hydrides Mg7TMH16 (TM=Sc, Ti, V, Y, Zr, Nb). The cohesive energies are calculated to analyze the stability, and the obtained enthalpies of formation for hydrides Mg7TMH16 have been used to investigate the possible pathways of formation reaction. The calculated enthalpy changes show that the decomposition temperatures of Mg7TMH16 are lower than that of MgH2. The electronic densities of states reveal that all the hydrides studied here exhibit metallic characteristics. The bonding nature of Mg7TMH16 is investigated, showing stronger covalent bonding between TM and H than between Mg and H.  相似文献   

6.
From the results of first principles tight-binding linear muffin-tin orbital (TB-LMTO) calculations, half-metallic ferromagnetism is proposed in Zn(TM)O2 with a chalcopyrite structure. The calculated electronic and magnetic property shows that consistent with the integer value for the total magnetic moment, half metallicity is obtained for ZnCrO2, ZnMnO2, ZnFeO2, ZnCoO2 and ZnNiO2. A careful analysis of the spin density reveals the ferromagnetic coupling between the p–d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

7.
Of the Rh3Y, Rh3La, Ir3Y and Ir3La inter-metallic compounds, the compound Rh3Y exists in hexagonal structure, Ir3Y and Ir3La exist in rhombohedral structure, whereas the compound Rh3La exists in both hexagonal and rhombohedral structures. Based on our tight binding-linear muffin tin orbital (TB-LMTO) study of other rhodium and iridium-based Rh3X and Ir3X (where X=Ti, Zr, Hf, V, Nb, Ta and Sc) inter-metallic compounds of AuCu3 type cubic structure, an attempt is made to examine whether the compounds Rh3Y, Rh3La, Ir3Y and Ir3La will undergo a structural phase transition to cubic structure from their experimentally reported structures. From our study, it is observed that the compounds Rh3Y and Rh3La undergo a structural phase transition to cubic phase at 4.5 and 10.1 GPa, respectively, from their experimentally reported hexagonal and rhombohedral phases. Further it is predicted that both the compounds Ir3Y and Ir3La can exist in the cubic phase itself at ambient condition, in contrary to the experimental observation. From the band structure outputs that have been plotted for the compounds under compression, it is observed that the compounds Rh3La, Ir3Y and Ir3La undergo the Lifshitz type of transition which may change the Fermi surface topology and hence the physical properties of these compounds.  相似文献   

8.
The coupling between magnetism and structural distortions in BiFeO3 (BFO) is investigated using density functional theory by considering the spin-orbit effect. Computational results show that the resulting magnetization M is rotated by reversal of sense of rotation of the oxygen octahedra in the double cell. The resulting magnetization is determined by the antiferrodistortive (AFD) distortions and ferroelectric (FE) displacements. This work clarifies the previous view that magnetism is only coupled with, and determined by, FE displacements. The excellent ferroelectricity is attributed significantly to the anomaly of Born effective charge of Bi, which is caused by the stereochemically active long pair of Bi 6s.  相似文献   

9.
An investigation into the phase stabilities of CaTiO3 under high pressure was conducted using first-principles calculations based on density functional theory. We have identified three candidate structures of CaTiO3, Pbnm, Pm3m and Cmcm, respectively. Our results demonstrate that a phase transition from orthorhombic (Pbnm) to cubic (Pm3m) is impossible for CaTiO3 under high pressure at ambient temperature, and further predict that Pbnm-CaTiO3 will transform to post-perovskite phase (Cmcm) at enough temperature and pressure.  相似文献   

10.
The magnetic properties of the orbitally degenerate quasi-one-dimensional cobaltites SrxBa1−xCoO3 are explained on the basis of a phase separation phenomenon. Noninteracting magnetic particles embedded in a nonferromagnetic matrix develop in the system. Details are given about the electronic and magnetic structure for x=0,0.2x=0,0.2 and 0.5. At x=0.5x=0.5, the geometry of the CoO6 trigonally distorted octahedra changes by about 1–2%, but magnetic particles get 3 times bigger, compared to the parent compound, with the corresponding changes in the magnetic properties. The electronic structure of the Co4+ ion, however, stays roughly unchanged.  相似文献   

11.
The electronic and optical properties of Nb doped SrTiO3 are studied by ab initio linear muffin-tin orbital method in the atomic sphere approximation. The equilibrium lattice constants of SrTi1−xNbxO3 with x=0.0, 0.25 and 0.5 are found by minimization of the total energy curves. The computated lattice constants are in good agreement with experimental data. Our electronic band calculation shows that the Fermi level of SrTi1−xNbxO3 with x≥0.125 moves into the conduction bands and the system shows metallic behavior. The numerical results indicate that the Nb impurity atoms would lead to the distortion of the band edges. The complex dielectric function of SrTiO3 and Nb doped SrTiO3 are calculated using the random-phase approximation. The doping effect on the optical properties of SrTi1−xNbxO3 is discussed.  相似文献   

12.
The structural and electronic properties of sodium bromide (NaBr) are investigated by the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange and correlation energy. The equilibrium lattice constant, bulk modulus and its pressure derivative are obtained by fitting the calculated total energy to the third-order Birch-Murnaghan equation of state. The band structure along the higher symmetry axes in the Brillouin zone, the density of states (DOS) and the partial density of states (PDOS) are presented. The results have been discussed and compared with the available experimental and theoretical data.  相似文献   

13.
We have investigated electronic and magnetic properties of hexagonal, tetragonal, and orthorhombic GdSi2, using the full-potential linearized augmented plane-wave method based on general gradient approximation for exchange-correlation potential. Antiferromagnetic (AFM) states of the GdSi2 are found from total energy calculations to be energetically more stable, compared to ferromagnetic (FM) states in all of the considered present crystal structures. It is in good agreement with an experimental result. The calculated magnetic moments of valence electrons of the Gd atoms are 0.16, 0.14, and 0.14 μB for hexagonal, tetragonal, and orthorhombic crystal structures in AFM states, respectively, and the Si atoms are coupled antiferromagnetically to the Gd atoms irrespective of crystal structure even though their magnitudes are negligible.  相似文献   

14.
The phase stability and electronic structure of YCu were studied by self-consistent full-potential linearized augmented plane wave method (FP_LAPW) on the basis of the density functional theory (DFT). The calculated equilibrium volumes are 41.963 and 173.21 Å3173.21 Å3 for B2 and B27 structures respectively, which are in good agreement with the experimental values. The total energy of the B27 phase is about 0.03 eV lower than that of the B2 phase. The formation energies are −1.173 and −1.204 eV1.204 eV for B2 and B27 structures respectively. The density of state at the Fermi energy, N(EF)N(EF), is 1.08 states/eV1.08 states/eV for B2 phase and 0.92 states/eV0.92 states/eV for B27 phase, respectively. These results indicate that the B27 phase is the thermodynamic ground state equilibrium phase of YCu at low temperatures, as observed experimentally. However, our calculations also predict that a pressure-induced B27 to B2 phase transition exists in YCu.  相似文献   

15.
The ab initio calculations have been used to study the generalized-stacking-fault energy (GSFE) surfaces and surface energies for the closed-packed (1 1 1) plane in FCC metals Cu, Ag, Au, Ni, Al, Rh, Ir, Pd, Pt, and Pb. The GSFE curves along (1 1 1) direction and (1 1 1) direction, and surface energies have been calculated from first principles. Based on the translational symmetry of the GSFE surfaces, the fitted expressions have been obtained from the Fourier series. Our results of the GSFEs and surface energies agree better with experimental results. The metals Al, Pd, and Pt have low γus/γI value, so full dislocation will be observed easily; while Cu, Ag, Au, and Ni have large γus/γI value, so it is preferred to create partial dislocation. From the calculations of surface energies, it is confirmed that the VIII column elements Ni, Rh, Ir, Pd, and Pt have higher surface energies than other metals.  相似文献   

16.
Ab initio calculations have been performed on Fe/Mo(1 0 0) superlattices in order to study the interfacial magnetic properties and layer thickness effect on the magnetic moments. In most cases, the magnetic moments of interfacial Fe monolayers are always smaller than those of the inner layers, and the induced magnetic moments of interfacial Mo monolayers oriented in the opposite direction. Calculation results show that the Fe layers are ferromagnetic when n = 3. As the thickness of the Mo layers increases, the influence of the Mo layer increases and the magnetic state of the Fe layer gradually changes into an antiferromagnetic or non-magnetic state. The change of magnetic moments of Fe/Mo superlattices is in agreement with the experimentally observed oscillation periods.  相似文献   

17.
We have performed relativistic first-principles full-potential linearized augmented plane wave (FLAPW) calculation for rare earth palladium sulfide EuPd3S4 in the ferromagnetic and antiferromagnetic states. The density of 4f electrons of Eu is taken from a local-spin-density approximation self-interaction correction (LSDA-SIC) atomic calculation. EuPd3S4 is found to exhibit antiferromagnetic ordering in its ground state. The charge, orbital, magnetic moment and spin ordering are explained with the electronic structure, the orbital-projected density of states and the total energy study. EuPd3S4 is found to be stable in the body-centered Type-I antiferromagnetic state, in agreement with experimental results. Different Eu states are found in antiferromagnetic ordering. The magnetic moments of different states obtained through spin-polarized calculation are also in good agreement with experimental results. The phenomena observed are explained by the orbital hybridization of Eu and Pd ions as compared with the free ions.  相似文献   

18.
We present the first-principles calculations of digital magnetic heterostructures Si/M, Ge/M. GaAs/M, GaSb/M, GaN/M and GaN/M (50%) with M=Cr, Mn, Fe, and Co. The interaction between magnetic dopants results in a wide spin-polarized two-dimensional band inside the gap. It is found that beginning occupation of the minority-spin band greatly increases the energy of the ferromagnetic (FM) state and leads, as a rule, to the antiferromagnetic (AFM) spin ordering. This mechanism causes transition to the AFM state, when interaction between magnetic atoms is too strong, and defines the optimum of Curie temperature as a function of transition element concentration in magnetic layers.  相似文献   

19.
The thermodynamic properties of ternary Mg2BIV (BIV = Si, Ge, Sn) solid solutions were first calculated by the ab‐initio density functional method. The results showed that there exist composition regions with d2G /dx2 < 0 in Mg2Si1–x Snx and Mg2Ge1–x Snx systems, implying the possibility of spinodal decomposition of the pseudobinary solid solutions. It is suggested that the spinodal decomposition would be a potential way to obtain Mg2BIV based bulk in‐situ nanocomposites with reduced grain sizes and enhanced phonon scattering, and hence an improved thermoelectric figure of merit. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The full-potential band-structure scheme based on the linear combination of overlapping nonorthogonal local-orbital (FPLO) is used. The crystal potential and density are represented as a lattice sum of local overlapping nonspherical contributions. The energetic transitions of BN of zinc-blende and wurtzite structures are calculated using the band structure scheme. The energy gap at ambient pressure is found to be indirect for the two structures. The structural properties of two structures of BN are (obtained from the total energy calculations) and the total density of states are calculated. The phase transition parameter of BN is investigated. The ionicity character of BN has been calculated to test the validity of our recent models. The results are in reasonable agreement with experimental and other theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号