首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study analytically, spin polarised current induced dynamics of Dzyaloshinskii-Moriya helimagnets within the phenomenological Landau-Lifshitz framework. Similarities and differences between two popular models of dissipative structures (Gilbert and Landau-Lifshitz dissipation) are explored. Analytical results are obtained and discussed for the magnetisation, the wave number and the velocity of the helical magnetisation structures which are analogous to the behaviour of domain walls under spin polarised current in ferromagnets.  相似文献   

2.
We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices.  相似文献   

3.
4.
A. John Peter 《Physics letters. A》2008,372(31):5239-5242
The spin dependent electron transmission through a non-magnetic III-V semiconductor symmetric well is studied theoretically so as to investigate the output transmission current polarization at zero magnetic field. Transparency of electron transmission is calculated as a function of electron energy as well as the well width, within the one electron band approximation along with the spin-orbit interaction. Enhanced spin-polarized resonant tunneling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level is observed. We predict that a spin-polarized current spontaneously emerges in this heterostructure. This effect could be employed in the fabrication of spin filters, spin injectors and detectors based on non-magnetic semiconductors.  相似文献   

5.
The spin transport signals from NiFe and Co into two-dimensional electron gas layers are measured for various thicknesses of transmission barriers. A stable and reproducible electrical detection of spin transport was obtained only when the barrier thickness is less than 10 nm. The typical interface resistance to observe spin signals in this experiment is about 0.5–250 Ω, which is a neither transparent nor a severe tunneling limit. The optimal interface resistance depends on the ferromagnetic materials, but severe tunneling barrier is not proper for fully electrical spin transport. Device size is also a critical factor to decide the proper range of interface resistance.  相似文献   

6.
Spin dynamics of two-dimensional electron gas confined in an asymmetrical quantum well is studied theoretically in the regime where the scattering frequency is comparable with the spin precession frequency due to the conduction band spin splitting. The spin polarization is shown to demonstrate quantum beats. If the spin splitting is determined by both bulk and structural asymmetry mechanisms the beats are damped at zero temperature even in the absence of a scattering. We calculate the decay of spin beats due to the thermal broadening of the electron distribution function and electron scattering. The magnetic field applied along the structure growth axis is shown to increase the frequency of the beats and shift system towards the collision dominated regime.  相似文献   

7.
We investigate a perpendicular electric current passing through a “ferromagnetic nanojunction”, that is through some layered nanosized structure of spin-valve type, containing two ferromagnetic metallic layers. Spacer may be used between the metallic layers to prevent the rotation of the moving spin phases. Such an arrangement is typical for spin valves: one of the metallic layers has strongly pinned magnetic lattice and the other one has free magnetic lattice and free mobile spins. Further the conditions are derived to provide a very high nonequilibrium spin injection level. It appears that the so-called spin resistances of the constitutive layers should be in definite relations to each other. These relations lead to the situation where the spin injection becomes dominant and significantly suppresses the “ordinary” spin-transfer torque. As a result, the threshold current becomes lowered down to 2-3 and even more orders of magnitude.  相似文献   

8.
We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current.  相似文献   

9.
Yilin Mi  Ming Zhang  Hui Yan 《Physics letters. A》2008,372(42):6434-6437
We use the two-component drift-diffusion model to study the spin density polarization in an organic semiconductor system under an external electric-field. The spin-dependent electrical-conductivity, the drift spin current and the diffusion spin current in the organic semiconductor are self-consistently derived. It is found that the spin current could be strongly influenced by the spin-dependent electrical-conductivity. When the spin-dependent conductivity varies from 0 to 0.5%, the spin current presents a very pronounced change almost three orders in magnitude. The electric-field could effectively enhance the spin-dependent electrical-conductivity and the spin current. Furthermore, the spin-dependent electrical-conductivity is position sensitive, but its position sensitivity goes down while electric-field is larger than about 1 mV/μm.  相似文献   

10.
Spin polarized injection into organic and inorganic semiconductors are studied theoretically from the spin diffusion theory and Ohm's law, and the emphases are placed on the effect of the carrier differences on the current spin polarization. The mobility and the spin-flip time of carriers in organic and inorganic semiconductors are different. From the calculation, it is found that current spin polarization at a ferromagnetic/organic interface is higher than that at a ferromagnetic/inorganic interface because of different carriers in them. Effects of the conductivity matching, the spin dependent interracial resistances, and the bulk spin polarization of the ferromagnetic layer on the spin polarized injection are also discussed.  相似文献   

11.
Using time-resolved photoluminescence and time-resolved Kerr rotation spectroscopy, we explore the unique electron spin behavior in an InAs submonolayer sandwiched in a GaAs matrix, which shows very different spin characteristics under resonant and non-resonant excitations. While a very long spin relaxation lifetime of a few nanoseconds at low temperature is observed under non-resonant excitation, it decreases dramatically under resonant excitation. These interesting results are attributed to the difference in electron-hole interactions caused by non-geminate or geminate capture of photo-generated electron-hole pairs in the two excitation cases, and provide a direct verification of the electron-hole spatial correlation effect on electron spin relaxation.  相似文献   

12.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

13.
The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance InxGa(1−x)As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended.  相似文献   

14.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

15.
In this Letter an alternative mechanism is proposed for current-induced antisymmetric lateral edge spin accumulations in thin strips of ballistic two-dimensional electron gases with intrinsic spin-orbit coupling. In this mechanism, the occurrence of current-induced antisymmetric lateral edge spin accumulations in a semiconductor strip is not due to a transverse spin current but originates from the combined action of the spin-orbit coupling, the boundary confinement on both lateral edges of the strip, and the time-reversal symmetry-breaking caused by the longitudinal charge current circulating through the strip. The results obtained in this Letter indicate that, the occurrence of current-induced antisymmetric lateral edge spin accumulations in a thin strip of a spin-orbit coupled two-dimensional electronic system does not need to be associated necessarily with a transverse spin current in principle.  相似文献   

16.
Considering the special carriers in organic semiconductors, the spin polarized current under electric field in a ferromagnetic/organic semiconductor system is theoretically studied. Based on the spin-diffusion theory, the current spin polarization under the electric field is obtained. It is found that electric field can enhance the current spin polarization.  相似文献   

17.
We present a model of spin transport in a Co/Cu(1 1 1)/Co pseudo-spin-valve (PSV) structure where current is flowing in the current perpendicular-to-plane (CPP) geometry. The model considers ballistic spin-dependent transmission at the two Co–Cu interfaces, as well as diffusive spin relaxation within the Cu spacer and free Co layer. In the latter, the spin relaxation process is composed of the usual longitudinal spin relaxation due to spin flip scattering, as well as transverse spin relaxation due to spin precession. The resulting spin transfer torque exerted on the moments within the free Co layer is composed of two contributions, the main contribution coming from “absorbed” spins in the interfacial regions. The second contribution arises from the relaxation of spin accumulation within the free Co layer. The calculated critical current density for switching is estimated to be approximately between 3.3×107 and 1.1×108 A/cm2, which is in agreement with available experimental results.  相似文献   

18.
Insertion of a resistive contact between a ferromagnetic metal and a semiconductor microstructure is of critical importance for achieving efficient spin injection into a semiconductor. However, the equations of the diffusion theory are rather cumbersome for the junctions including such contacts. A technique based on deriving a system of self-consistent equations for the coefficients of spin injection, γ, through different contacts are developed. These equations are concise when written in the proper notations. Moreover, the resistance of a two-contact junction can be expressed in terms of γ's of both contacts. This equation makes calculating the spin valve effect straightforward, allows to find an explicit expression for the junction resistance and to prove that its nonequilibrium part is positive. Relation of these parameters to different phenomena like spin-e.m.f. and the contact transients is established. Comparative effect of the Coulomb screening on different parameters is clarified. It is also shown that the spin non-conservation in a contact can have a dramatic effect on the non-equilibrium resistance of the junction. Received 2 May 2002 / Received in final form 26 July 2002 Published online 15 October 2002 RID="a" ID="a"Also at the Department of Physics, MIT, Cambridge, Massachusetts 02139, USA e-mail: erashba@mailaps.org  相似文献   

19.
We study the pumped spin current of an interacting quantum dot tunnel coupled to a single lead in the presence of electron spin resonance (ESR) field. The spin decoherence in the dot is included by the Bffttiker approach. Using the nonequilibrium Green's function technique, we show that ESR-induced spin flip can generate finite spin current with no charge transport. Both the Coulomb interaction and spin decoherence decrease the amplitude of spin current. The dependence of pumped spin current on the intensity and frequency of ESR field, and the spin decoherence is discussed.  相似文献   

20.
We consider a microscopic theory of F/S/F trilayers with metallic or insulating ferromagnets. The trilayer with metallic ferromagnets is controlled by the formation of non local pair correlations among the two ferromagnets which do not exist with insulating ferromagnets. The difference between the insulating and ferromagnetic models can be understood from lowest order diagrams. Metallic ferromagnets are controlled by non local pair correlations and the superconducting gap is larger if the ferromagnetic electrodes have a parallel spin orientation. Insulating ferromagnets are controlled by pair breaking and the superconducting gap is smaller if the ferromagnetic electrodes have a parallel spin orientation. The same behavior is found in the presence of disorder in the microscopic phase variables and also in the presence of a partial spin polarization of the ferromagnets. The different behaviors of the metallic and insulating trilayers may be probed in experiments. Received 4 July 2001 and Received in final form 8 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号