共查询到20条相似文献,搜索用时 15 毫秒
1.
Da-Li Sun 《Journal of magnetism and magnetic materials》2009,321(18):2737-2741
Using the micromagnetic simulations, we have investigated the magnetization reversal and magnetostatic interaction of Fe3Pt nanowires arrays with wire diameters lower than 40 nm. By changing the number of interacting nanowires, N, interwire distance, a, and wire diameter, D, the effects of magnetostatic interaction on coercivity and remanence are investigated in detail. According to the simulated results, the contribution to the stray field induced by surface perpendicular magnetization at the end of wires is established. 相似文献
2.
Magnetization reversal process and magnetoresistance (MR) hysteresis of single domain permalloy nanowires are numerically investigated by using OOMMF. It is shown that the abrupt jumps in the magnetoresistance are due to the domain formation and domain wall propagation so that a magnetic domain suddenly switches from one state into another. A nonmonotonic angular dependence of the jump (switching) field is found. Coherent rotation mode is responsible for the smooth variation of MR curves. The nucleation pattern of newly born domains depends on the tilted angle of external field. 相似文献
3.
GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes
F. Nasirpouri P. Southern M. Ghorbani A. Iraji zad W. Schwarzacher 《Journal of magnetism and magnetic materials》2007
Commercially available track-etched polyester membranes were used as templates to electrodeposit Co–Ni–Cu/Cu multilayered nanowires, giving room-temperature current perpendicular to plane (CPP) giant magnetoresistance (GMR) values of up to ∼12%. In contrast to similar nanowires electrodeposited in track-etched polycarbonate membranes, the GMR obtained in multilayered nanowires electrodeposited in the polyester membranes increased with decreasing Cu-layer thickness tCu, for tCu in the 2–7 nm range, indicating a lack of ferromagnetic coupling through pinholes, etc. Transmission electron micrographs showed clear evidence for smooth, parallel layer interfaces in the nanowires. 相似文献
4.
Jian-Hua Gao Qing-Feng ZhanWei He Da-Li SunZhao-Hua Cheng 《Journal of magnetism and magnetic materials》2006
We have investigated the temperature dependence of the magnetic properties and the magnetic relaxation of the Fe55Co45 nanowire arrays electrodeposited into self-assembled porous alumina templates with the diameter about 10 nm. X-ray diffraction (XRD) pattern indicates that the nanowire arrays are BCC structure with [1 1 0] orientation along the nanowire axes. Owing to the strong shape anisotropy, the nanowire arrays exhibit uniaxial magnetic anisotropy with the easy magnetization direction along the nanowire axes. The coercivity at 5 K can be explained by the sphere chains of the symmetric fanning mechanism. The temperature dependence of coercivity can be interpreted by thermally activated reversal mechanism as being the localized nucleation reversal mechanism with the activation volume much smaller than the wire volume. Strong field and temperature-dependent magnetic viscosity effects were also observed. 相似文献
5.
G.A. Badini-Confalonieri G. InfanteJ. Torrejón M. Vázquez 《Journal of magnetism and magnetic materials》2008
We report on the magnetic behaviour of a novel family of two-magnetic-phase multilayer microwires consisting of: (i) a bistable FeSiB glass-coated amorphous microwire as soft nucleus, and (ii) a polycrystalline CoNi outer microtube as harder layer. Such bi-phase microwires are prepared by combined quenching and drawing plus sputtering and electroplating techniques. The stray field produced by the harder outer layer after premagnetizing it to saturation is used to bias the magnetization reversal process of the soft nucleus via dipolar magnetostatic coupling. A detailed analysis of the asymmetric low-field magnetization reversal process of the soft nucleus is presented together with the study of the fluctuating switching field and its asymmetric behaviour. The study of the domain wall characteristics under the presence of a nucleation coil at one end of the microwire allows us to draw conclusions on the role of the bias field generated by the premagnetized hard outer layer. 相似文献
6.
Masakiyo Tsunoda Mamiko Naka Dong Young Kim Migaku Takahashi 《Journal of magnetism and magnetic materials》2006
Exchange biasing of ferromagnetic layer deposited on the antiferromagnetic superlattice was investigated in (Co70Fe30/Ru)29.5/Ru/Co90Fe10 multilayers. Uniaxial magnetic anisotropy (KAF) was induced and tuned in the antiferromagentic superlattice by uniaxial substrate bending method through the inverse effect of magnetostriction. The exchange bias increased and tended to be saturated with increasing the KAF, while it was not observed at KAF=0. 相似文献
7.
M. Almasi Kashi A. Ramazani F. Adelnia NajafabadiZ. Heydari 《Applied Surface Science》2011,257(22):9347-9350
CoCu alloy nanowire arrays embedded in anodic alumina template were fabricated by ac pulse electrodeposition. Different off-times between pulses in an electrolyte with constant concentration of Co+2 and Cu+2 and acidity of 4 were employed. The effect of deposition parameters on the alloy contents, microstructures and magnetic properties of CoxCu1−x nanowires were studied. It is shown that Co content decreased by increasing the off-time between pulses in a wide range (x = 0.53-0.07). These results are in consistence with saturation magnetization, which was reduced with increase in the off-time between pulses. It was also found that by optimizing the off-times, it is possible to fabricate CoCu nanowires with mixed phase of hcp Co, fcc Cu and fcc CoCu crystal phase. 相似文献
8.
We study how a magnetic field step triggers the precessional switching of the magnetization in an isotropic thin film. Using a variational approach, we make an analytical estimate of the switching frequency. We compare it to more general analytical models, and to the results obtained numerically by direct integration of the equations of motion. We show that the periodic motions of the three magnetization components can be described satisfactorily with truncated Fourier expansions, indicating a relatively high spectral purity of the magnetic response. Our analytical expressions are simple enough to be physically transparent at first sight, in contrast to the results of the more elaborate models that treat also anisotropy. 相似文献
9.
We have investigated the influence of composition and annealing conditions on the magnetic properties and microstructural features of SmCox films that were prepared by sputtering and subsequent annealing. A huge in-plane coercivity of 5.6 T was obtained from an optimally annealed Sm–Co film, which was attributed to the nanometer sized polycrystalline microstructure of the highly anisotropic SmCo5 phase. Although a high density of planar defects were observed in the films that were annealed at high temperatures, they did not act as strong pinning sites for domain wall motion. The effect of Cu on [SmCo4.5(9 nm)/Cu(xnm)]10 multilayer thin films was also studied. An appropriate Cu content increased the coercivity. 相似文献
10.
S. Shamaila R. Sharif S. Riaz M. Ma M. Khaleeq-ur-Rahman X.F. Han 《Journal of magnetism and magnetic materials》2008
Magnetic and magnetization properties of fcc Co1−xPtx (x?0.3) alloy nanowires fabricated by electrodeposition into self-synthesized anodic alumina templates are investigated. Magnetization curves, measured for varying wire geometries, show a crossover of easy axis of magnetization from parallel to perpendicular to the nanowire axis as a function of the diameter and length. The measured values of coercivity (Hc) and remanent squareness (SQ) of CoPt nanowire arrays, as a function of angle (θ) between the field and wire axis, support the crossover of easy axis of magnetization. The curling mode of the magnetization reversal process is observed for CoPt nanowire arrays. At low temperatures, the easy axis for magnetization of the nanowires is observed to deviate from the room-temperature orientation. 相似文献
11.
A new way of magnetization switching employing both the spin-transfer torque and the torque by a magnetic field is proposed. The solution of the Landau–Lifshitz–Gilbert equation shows that the dynamics of the magnetization in the initial stage of the switching is similar to that in the precessional switching, while that in the final stage is rather similar to the relaxing switching. We call the present method the relaxing-precessional switching. It offers a faster and lower-power-consuming way of switching than the relaxing switching and a more controllable way than the precessional switching. 相似文献
12.
13.
Ji Hyun Min Jun-Hua Wu Ji Ung Cho Qun Xian Liu Ju Hun Lee Young-Dong Ko Jin-Seok Chung Jae-Ho Lee Young Keun Kim 《Journal of magnetism and magnetic materials》2006
CoCu thin films were fabricated on a nanocrystalline substrate by DC electrodeposition. It is found that the composition, structure and magnetic properties of the thin films exhibit a strong dependence on the current density and pH values of the bath electrolyte. The effect of annealing as well as the structure–property relation was investigated. 相似文献
14.
K.-W. Lin Y.-M. Tzeng Z.-Y. Guo C.-Y. Liu J. van Lierop 《Journal of magnetism and magnetic materials》2006
We have measured positive exchange bias in a Ni80Fe20/NixFe1−xO thin-film nanocrystallite system. A series of solid solution NixFe1−xO 40 nm thick films capped with 25 nm thick Ni80Fe20 were deposited using a range of %O2/Ar bombardment energies (i.e. End-Hall voltages). Proper tuning of the deposition conditions results in a Ni80Fe20/NixFe1−xO (30%O2/Ar) based bilayer that exhibits a positive exchange bias loop shift of Hex∼60 Oe at 150 K. 相似文献
15.
A. Mumtaz K. Maaz B. Janjua S.K. Hasanain M.F. Bertino 《Journal of magnetism and magnetic materials》2007
Magnetic properties of core–shell cobalt ferrite nanoparticles prepared by co-precipitation route in the range 15–48 nm have been studied. It is shown that the coercivity follows non-monotonic size dependence and exhibits a peak at around 26 nm. Field-cooled magnetization exhibited both horizontal (exchange bias) and vertical shifts. The exchange bias is understood as originating at the interface between a surface region (with structural and spin disorder) and a core ferrimagnetic region. The dependence of the exchange bias and vertical shift on the particle size and cooling field is found to have significant differences. These differences are explained in the light of recent results that suggest that there is a variation of the pinning strength amongst the interface spins and the vertical shift is affected by the more strongly pinned uncompensated spins. 相似文献
16.
Hard/soft-magnetic composite pillar array medium is proposed for ultra-high-density recording media. Magnetization reversal process for a single hard/soft-magnetic composite pillar in the medium is calculated using the Landau–Lifshitz–Gilbert equation. Magnetization reversal of the soft-magnetic unit helps the magnetization reversal for the hard-magnetic unit, and the effective coercivity for the hard-magnetic unit is greatly reduced. Thereby saturation recording to the high-Ku-hard-magnetic material used for perpendicular magnetic recording will be realizable. 相似文献
17.
Vortex Pinning due to Dynamic Spin-Vortex Interaction in aSuperconductor/Ferromagnet Multilayer 下载免费PDF全文
We investigate the mutual interaction between superconductivity and ferromagnetism in a Nb/Ni81 Ee19 multilayer by ac susceptibility measurements. Compared with a pure superconducting Nb film, the critical current density of the multilayer is apparently enhanced in a low magnetic field region but remains nearly the same in high magnetic fields, which indicates that a continuous ferromagnetic layer with in-plane magnetization can produce strong vortex pinning in a low field region. We interpret this unusual vortex-pinning phenomenon as a consequence of dynamic spin vortex interaction which induces a spin rotation following vortex movement. In addition, we propose that this dynamic interaction could be used for spin manipulation via a superconductor. 相似文献
18.
R. Sharif S. Shamaila M. Ma L.D. Yao R.C. Yu X.F. Han Yong Wang M. Khaleeq-ur-Rahman 《Journal of magnetism and magnetic materials》2008
Magnetic and microstructural characterizations of cobalt-rich CoFe and CoFeB nanowires fabricated in commercially available alumite templates were investigated. The modifications in magnetic and microstructural behaviors of crystalline CoFe and amorphous CoFeB nanowires were observed after magnetic field annealing and reannealing of the samples. 相似文献
19.
Guoqing Li Hitoshi Saito Shunji Ishio Toshiyuki Shima Koki Takanashi 《Journal of magnetism and magnetic materials》2006
Anomalous magnetization processes and non-symmetrical domain wall displacements in the minor loop of L10 FePt particulate films were investigated by magnetization measurements and in situ magnetic force microscopy. Magnetization (M) decreases dramatically on increasing the magnetic field to ∼3 kOe after which M becomes small and constant in the range of 5–20 kOe as observed in the successive measurement of minor loops. The domain wall displacement is non-symmetrical with respect to the field direction. The anomalous magnetization behavior was attributed to the non-symmetrical domain wall displacement and large magnetic field required for domain wall nucleation. Energy calculations from modeling suggest that non-symmetrical domain wall displacement is caused by the existence of metastable domains in which the domain edges are stuck to the particle boundaries. 相似文献
20.
Y.L. Iunin Y.P. Kabanov V.I. Nikitenko X.M. Cheng C.L. Chien A.J. Shapiro R.D. Shull 《Journal of magnetism and magnetic materials》2008
We studied the magnetization reversal in ultrathin [Co/Pt]n films (n=1, 2, and 4) using magneto-optical Kerr microscopy. These materials demonstrate unusual asymmetries in the activity of nucleation centers and domain wall motion. It was found that application of very high holding magnetic field prior to magnetization reversal, exceeding some critical value much larger than the apparent saturation field, suppresses the subsequent ‘asymmetric’ nucleation centers, activity. We revealed that the ‘asymmetric’ nucleation centers become active again after subsequent reversal cycles coming from a smaller holding field and studied how the asymmetry returns with the decrease of applied holding field. It was found that in low-coercivity ultrathin Co films, the asymmetry in domain wall velocity decreased sharply with the applied field increase and disappeared when the reversal field is greater than μ0H=1.5 mT. 相似文献