首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show a possibility to determine the parameters characterizing surface magnetic anisotropy of platelet BaFe12O19 nanocrystals with thickness comparable to the magnetoperturbed surface layer of high-anisotropic hexagonal crystal. Taking into account the above-mentioned specific character of the particles, we introduce the constant KS as the surface anisotropy energy per unit volume of near-surface layer. Temperature dependence of the surface anisotropy field as one of the components of effective anisotropy was corrected taking into account the thermal fluctuations. Discovered anomaly initiated calculation of the surface anisotropy constant with different approaches for two different temperature ranges. Analyzing the KS sign changes with temperature, we conclude about the transformation of surface anisotropy from plane to axis type.  相似文献   

2.
We have studied the magnetization and AC susceptibility of a dilute colloidal dispersion of εε-Co nanodiscs. The temperature dependence of the magnetization implies that the nanodisc moments become largely static below a blocking temperature which exceeds room temperature. The related anisotropy energy is significantly larger than the magnetocrystalline anisotropy for bulk εε-Co, which may result either from surface modifications to the crystalline anisotropy, or perhaps from shape anisotropy. The saturation moment is found to be temperature independent, over a wide range of temperatures and also close to the blocking temperature, although the field at which saturation occurs varies considerably with temperature. A coercive field of 1700 Oe is found at low temperature, indicating that magnetization reversal involves the coordinated rotation of the moments in individual nanodiscs. Aging effects are observed in the AC susceptibility, implying that the spatial coherence of the room temperature dispersions increases over time, leading to static short-range order.  相似文献   

3.
Electron microscopy was employed to investigate the structure of magnetic field crystallized (Co1−xFex)89Zr7B4 alloys with only dilute Fe-contents (x=0, 0.025, 0.05, and 0.10). The x=0.025 and 0.05 alloys exhibit very large field induced anisotropies and multiple nanocrystalline phases (BCC, FCC, and HCP) surrounded by an intergranular amorphous phase. Correlation between the volume fraction crystallized and the measured value of HK suggests that the large KU values are associated with the crystalline phases that form. Multiple crystalline phases are present for the highest KU alloys and so the presence of FCC and/or HCP-type nanocrystals may be responsible for these observations. High-resolution transmission electron microscopy (HRTEM) illustrates a number of microstructural features including (1) high densities of stacking faults in many of the FCC and, in particular, the HCP-type nanocrystals, (2) infrequent BCC/FCC orientation relationships, and (3) nanocrystals with disordered or long period stacking sequences of close-packed planes. High densities of planar faults are suggested as a potential source of KU for the FCC and HCP-type nanocrystals, but the origin of the large values of KU found in dilute Fe-containing, Co-rich “nanocomposite” alloys is an area where further work is needed.  相似文献   

4.
Manganese ferrite nanoparticles with dysprosium (Dy) ions substituted for iron ions have been prepared by using a sol-gel method. Substitution of a small fraction Dy for Fe results in the larger magnetocrystallite anisotropy of MnFe2−xDyxO4 (x=0.2, 0.4) nanoparticles than that of MnFe2O4 nanoparticles. The magnetosrystallite anisotropy was enhanced with the increase in the substituted dysprosium content. Combining the result of Mössbauer spectra with ZFC and FC curves, we know clearly that the Dy substitution can modify the anisotropy of MnFe2O4 nanoparticles for its strong spin-orbital coupling. Through this simple substitution, we can control the magnetosrystallite anisotropy of the magnetic nanoparticles and make good use of the products according as we need.  相似文献   

5.
We obtained the temperature dependence for low-field boundary of the anisotropy field distribution in a system of barium hexaferrite nanocrystals in the temperature range from 300 to 700 K. We treated the experimental data taking into account the influence of thermal fluctuations on the anisotropy field and the transition of particles into the paramagnetic state, stimulated by external magnetic field. We showed that the dependence under consideration is formed by particles of different volume, which increased from 3.5×10−18 to 40×10−18 cm3 while the particles lost their magnetic stability with the temperature growth.  相似文献   

6.
The geometrical and magnetic properties of bimetallic clusters (CoPt)n(1?n?5) have been studied by using the generalized gradient correction spin density formalisms. In general, the ground state structures of (CoPt)n clusters are the three-dimension structures. We found that both the binding energy and magnetism per (CoPt) unit are increasing consistently with the size of the Co–Pt cluster (n). However, as the n increases, the magnetism shows a trace of convergence while the binding energy shows a linearly increasing pattern. Generally, Co average magnetic moment is enhanced when alloyed with Pt atoms than that in pure Co clusters.  相似文献   

7.
The magnetic properties of chalcogenide spinel CuCr2Se4 nanocrystals have been studied as a function of crystallite size (15-30 nm). A solution-based method is used for the facile synthesis of the nanocrystals with good size control. They have close to cubic morphology with a narrow size distribution and exhibit superparamagnetic behavior at room temperature. The Curie temperature and saturation magnetization of the nanocrystals are lower as compared with the bulk and decrease with decreasing nanocrystal size. A similar trend is observed in the paramagnetic state for the Curie-Weiss temperature and effective magnetic moment. The low temperature magnetization behavior can be qualitatively explained by spin glass dynamics.  相似文献   

8.
The influence of different M2+ cations on the effective magnetic anisotropy of systems composed of MFe2O4 (M=Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac)3, Co (acac)2 and Mn (acac)2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5–7.6 nm. Powder samples were analyzed by ac susceptibility and Mössbauer measurements, and Keff for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation.  相似文献   

9.
We report a theoretical study of the magnetic behavior of symmetrical twined PdN (N≤220) clusters. The twined PdN particles were built from two equal PdM seed-clusters with fcc-like structure for M=38, 55, 79 and 116. The optimized geometrical structures of PdN (with N<2M) were obtained from an uniform relaxation of the fcc-like twined configurations using the embedded atom method (EAM). The spin-polarized electronic structure and related magnetic properties of those optimized geometries were calculated by solving self-consistently a spd tight-binding Hamiltonian. We observe that, in some cases the twining process may induce and/or enhance the magnetic moment of the clusters even in the case when the seed-clusters are non-magnetic. Our results also suggest a strong dependence on the twining orientation, providing further support to the influence of symmetry effects on the magnetic properties of finite transition-metal systems. We discuss our results in comparison with some recent experimental observations for Pd nanoparticles [Shinohara et al., Phys. Rev. Lett. 91 (2003) 197201. [14]; Sampedro et al., Phys. Rev. Lett. 91 (2003) 237203. [13]].  相似文献   

10.
The magnetic anisotropy and domain structure of electrodeposited cylindrical Co nanowires with length of 10 or 20 μm and diameters ranging from 30 to 450 nm are studied by means of magnetization and magnetic torque measurements, as well as magnetic force microscopy. Experimental results reveal that crystal anisotropy either concurs with shape anisotropy in maintaining the Co magnetization aligned along the wire or favours an orientation of the magnetization perpendicular to the wire, hence competing with shape anisotropy, depending on whether the diameter of the wires is smaller or larger than a critical diameter of 50 nm. This change of crystal anisotropy, originating in changes in the crystallographic structure of Co, is naturally found to strongly modify the zero (or small) field magnetic domain structure in the nanowires. Except for nanowires with parallel-to-wire crystal anisotropy (very small diameters) where single-domain behaviour may occur, the formation of magnetic domains is required to explain the experimental observations. The geometrical restriction imposed on the magnetization by the small lateral size of the wires proves to play an important role in the domain structures formed. Received 14 September 2000  相似文献   

11.
We present the synthesis and magnetic properties of high quality uncoated and gold-coated iron oxide magnetic nanoparticles. The structural properties of these nanoparticles are investigated by transmission electron microscopy, UV-visible spectroscopy and X-ray diffraction. Experimental results and theoretical simulations indicate that the synthesized nanoparticles present a very good monodispersity, and well defined size and shape. The coercive field of these particles is identified by low-temperature first-order reversal curves and the results used in order to fit zero-field-cooled magnetization processes with theoretical models. The identification of the parameters in this analysis suggests that the coating process hardly affects the morphology and the overall magnetic properties of the cores inside coated particles.  相似文献   

12.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (HE=5590 kOe), anisotropy field (HA=0.5 kOe) and Dzyaloshinsky–Moriya antisymmetric field (HD=149 kOe) are in good agreement with previous reports on this system.  相似文献   

13.
This paper reviews experimental results concerning magnetic anisotropy in geometrically frustrated kagome staircase lattices. Following problems are discussed: high-temperature susceptibility measurements of kagome single crystals; inelastic neutron scattering measurements on Co3V2O8 single crystals; EPR of Co2+ ions in kagome staircase Mg3V2O8 single crystals. The single-ion anisotropy Hamiltonian is used to analyze experimental results. It is suggested that the magnetic anisotropy in kagome staircase M3V2O8 (M=Co, Ni, Mn) oxides has mainly single-ion origin.  相似文献   

14.
We have investigated the influence of anisotropy on the magnetization curves of antiferromagnetic nanoparticles. We show that if such curves are analyzed in a conventional way, i.e. using a Langevin function in combination with a linear term, this usually results in good quality fits, but with an apparent temperature dependence of parameters such as the magnetic moment per particle and the antiferromagnetic susceptibility. In order to avoid the problems associated with anisotropy as well as volume/moment distributions we propose that the initial susceptibility is used when analyzing the temperature dependence of the magnetic moment.  相似文献   

15.
The magnetization behavior and the magnetic entropy change of a system made up of ferromagnetically interacting particles are calculated by using Monte Carlo simulation. The effect of the magnetic anisotropy of particles and the dipolar–dipolar interaction between particles on the magnetization and the magnetic entropy change of the system are discussed. It is found that there is no spontaneous magnetization, both the magnetic anisotropy of particles and the dipolar–dipolar interaction between particles restrains the system's magnetizing in the external magnetic field. The magnetic entropy change decreases with the increase in temperature in the system without the dipolar–dipolar interaction; however, the dipolar–dipolar interaction between particles makes the magnetic entropy change of the system have maximum value at low temperatures.  相似文献   

16.
17.
We present a phenomenological model for the interaction field in ferromagnetic nanowire arrays and use it to obtain the effective anisotropy field of individual nanowires, from the in-plane saturation field of the array. In contrast to other methods which may be used to estimate this parameter, the proposed strategy requires no knowledge of the saturation magnetization nor of the nanowire radius. Applied to three arrays of different compositions, this approach yields an equivalent anisotropy field of the individual nanowires approximately equal to Ms/2Ms/2, indicating that its origin is the demagnetizing field of the wire.  相似文献   

18.
The influence of the torsion stress on the surface magnetic structure in Co-rich amorphous glass covered microwires has been investigated. The limit angle of the surface helical anisotropy induced by the torsion stress has been determined in agreement with the model which considers the torsion stress as a interference of two tensile stresses of opposite signs directed at 45° and 135° relative to the longitudinal axis of the wire.  相似文献   

19.
The magnetic properties of small YN clusters are studied by using a tight-binding Hubbard Hamiltonian in the unrestricted Hartree-Fock approximation. Several types of cluster geometries are considered in order to see the effects of the size and symmetry of the structures on the magnetic properties. The average magnetic moments are found to be constant over large domains of variations in the interatomic distance, a fact that can be explained by the existing closed shell electronic configurations at least for one spin direction in all our magnetic solutions. Small energy gains upon the onset of magnetization are obtained, which reveals the low stability of the magnetic solutions. Our results contradict the prediction of a magnetic-nonmagnetic transition at a large cluster size (about 90 atoms) for these kinds of systems. Received: 27 April 1998 / Received in final form: 23 June 1998 / Accepted: 17 July 1998  相似文献   

20.
We propose a model explaining the origin of cubic magnetic anisotropy in disordered semiconductor. We show that the magnetic anisotropy changes with the position of the Fermi energy in the valence band and the level of disorder in the crystal. The method is applied to Pb1−xySnyMnxTe and Sn1−xMnxTe ferromagnetic semiconductor crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号