首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Metalation of the Diaminosiloxane O(SiiPr2NH2)2 The 1,3‐diaminoldisiloxane O(SiiPr2NH2)2 ( 1 ) was obtained from the reaction of O(SiiPr2Cl)2 with NH3. The reactions of 1 with AlEt3 or GaEt3 produced the compounds [O{SiiPr2N(H)MEt2}{SiiPr2NMEt}]2 ( 2 : M = Al; 3 : M = Ga). The crystal structures of 2 and 3 were determined by single crystal X‐ray diffraction, showing a polycyclic M4N4Si4O2 core structure of these molecules.  相似文献   

2.
The title compound ( 1 ) was obtained by salt‐metathesis reaction of iPr3SiPLi2 with two molar equiv. of iPr3SiOTf (OTf = OSO2CF3) in 34% yield. Surprisingly, ( 1 ) consists of an 4 : 1 mixture of the two diastereomers ( 1 a ) and ( 1 b ), which do not interconvert to each other even at their decomposition temperature (> 70 °C). They represent different iPr‐rotational isomers which are separated by an unusual high rotational barrier (> 25 kcal mol–1), resulting from hindered rotations around the Si–C and C–C bonds. The unexpectedly small magnitude of the 1J(Si, P) coupling constant of ( 1 a ) (9.4 Hz) and ( 1 b ) (9.0 Hz) reflects unusual electronic properties of the Si3P skeleton. Hitherto only ( 1 a ) could be isolated in the form of single‐crystals and its structure was determined by X‐ray diffraction analysis. The P‐atom in ( 1 a ) is almost planar coordinated (sum of bond angles = 359.789(3)°), but the Si–P‐distance (2.264(7) Å) resembles those values of related silylphosphanes with pyramidally coordinated P atoms. Although MNDO calculations revealed two other iPr‐rotational isomers with similar energy, they prove that the Si3P skeleton prefers the trigonal‐planar arrangement due to steric congestion.  相似文献   

3.
Nanosheet compounds Pd11(SiiPr)2(SiiPr2)4(CNtBu)10 ( 1 ) and Pd11(SiiPr)2(SiiPr2)4(CNMes)10 ( 2 ), containing two Pd7(SiiPr)(SiiPr2)2(CNR)4 plates (R=tBu or Mes) connected with three common Pd atoms, were investigated with DFT method. All Pd atoms are somewhat positively charged and the electron density is accumulated between the Pd and Si atoms, indicating that a charge transfer (CT) occurs from the Pd to the Si atoms of the SiMe2 and SiMe groups. Negative regions of the Laplacian of the electron density were found between the Pd and Si atoms. A model of a seven‐coordinated Si species, that is, Pd5(Pd?SiMe), is predicted to be a stable pentagonal bipyramidal molecule. Five Pd atoms in the equatorial plane form bonding overlaps with two 3p orbitals of the Si atom. This is a new type of hypervalency. The Ge analogues have geometry and an electronic structure similar to those of the Si compounds. But their formation energies are smaller than those of the Si analogues. The use of the element Si is crucial to synthesize these nanoplate compounds.  相似文献   

4.
The reaction of AlCl3 with Li2PR (R = SiiPr3, SiMeiPr2) in a mixture of heptane and ether yields in the polycyclic compounds [(AlCl)43‐PR)2(μ‐PR)2(Et2O)2]( 1a : R = SiiPr3; 1b : SiMeiPr2) with a ladder‐shaped Al4P4 core. The coordination sphere of the outer aluminium atoms in these compounds is completed by ether ligands. In contrast, the reaction of AlCl3 with Li2PSiiPr3 in pure heptane yields in the formation of the hexagonal prismatic compound [(AlCl)63‐PSiiPr3)6]( 2 ). 1 and 2 were characterized by single crystal X‐ray diffraction analysis as well as by 31P{1H} and 27Al NMR spectroscopy. The structure determining effect of the solvent can be rationalized by quantumchemical calculations, which also show that the hexagonal prismatic structure is the most stable of the investigated oligomers in absence of ether.  相似文献   

5.
In this work we report the synthesis and characterisation of the 1.5‐diphosphanyldiethylether O{C2H4PH(SiiPr3)}2 ( 2 ) in which two silyl‐substituted phosphine groups are linked by an ether bridge as well as the compound O(SiiPr2PHEt)2 ( 3 ) where two ethyl substitute phosphine groups are connected by a siloxane bridge. In addition, we describe the metalation of 2 and 3 with triisopropylindium. These reactions lead to the compounds [O{C2H4P(SiiPr3)IniPr2}2] ( 4 ) and [O{SiiPr2P(Et)IniPr2}2] ( 5 ) with In2P2 ring structures.  相似文献   

6.
The reactions of the diphosphanylsiloxane O(SiiPr2PH2)2 (1) with MiPr3 (M = Ga, In) produced the polycyclic compounds [O{SiiPr2(PH)MiPr2}{SiiPr2(P)MiPr}] 2 (2, 3). Compounds 2 and 3 are composed of three M2P2 rings forming a ladder structure and two OSi2P2M rings. By reactions of 1 with n-BuLi the polymeric compound [O(SiiPr2PHLi)2(THF)(TMEDA)] · THF (4) was obtained.  相似文献   

7.
[iPr2P]2P? SiMe3 and [iPr2P]2PLi – Synthesis and Reactions Structure of [iPr2P]2P? P[PiPr2]2 [iPr2P]2P? SiMe3 1 and [iPr2P]2PLi 2 were prepared to investigate the influence of the bulky alkyl groups on formation and properties of the ylides R2P? P?P(X)R2 (R = iPr, tBu; X = Br, Me) in reactions of 1 with CBr4 and of 2 with 1,2-dibromoethane or MeCl, resp. Compared to the iPr groups the tBu groups favour the formation of ylides. With CBr4 1 forms iPr2P? P?P(Br)iPr2 5 just as a minor product which decomposes already below ?30°C. With 1,2-dibromoethane 2 yields only traces of 5 but [iPr2P]P? P[P(iPr)2]2 7 as main product. With MeCl 2 gives iPrP? P?P(Me)iPr2 9 and [iPr2P]2PMe 10 in a molar ratio of 1:1. 9 is considerably more stable than 5. 7 crystallizes triclinic in the space group P1 (No. 2) with a = 10.813 Å, b = 11.967 Å, c = 15.362 Å, α = 67.90°, β = 71.36°, γ = 64.11° and two formula units in the unit cell.  相似文献   

8.
The reaction of iPr2Si(PH2)2 ( 1 ) with [Ca{N(SiMe3)2}2(THF)2] at 25 °C in molar ratio 1:1 yields the compound [Ca3{iPr2Si(PH)2}3(THF)6] ( 2 ). Compound 2 consists of two Ca2P3 trigonal bipyramids with one conjoint calcium corner and SiiPr2 bridged phosphorus atoms. In contrast, the same reaction at 60 °C yield the complex [Ca({P(SiiPr2)2PH}2(THF)4] ( 3 ). The isotype strontium compound [Sr({P(SiiPr2)2PH}2(THF)4] ( 4 ) was obtained from the reaction of iPr2Si(PH2)2 with [Sr{N(SiMe3)2}2(DME)2]. The Compounds 2 – 4 were characterised by single crystal X‐ray diffraction, elemental analysis as well as IR and NMR spectroscopic techniques.  相似文献   

9.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

10.
Two new silanols bearing very bulky silyl groups, (i-Pr3 Si)3SiOH and (t − BuMe2Si)3SiOH were prepared by peracidoxidation of their respective silanes. The X − ray crystallographic analysis revealed that (t − BuMe2Si)3 SiOH forms a dimeric structure with hydrogen bonding, while (i − Pr3 Si)3 SiOH exists as a monomer in the crystal. The effects of the size of the substituents as well as the reactivity of these silanols are discussed.  相似文献   

11.
The Tris(triisopropylsilyl)pnikogenes: Synthesis and Characterisation of [E(Si i Pr3)3] (E = P, As, Sb) The compounds [E(SiiPr3)3] (E = P, As, Sb) ( 1 – 3 ) were prepared in high yields by the reaction of (Na/K)3E with iPr3SiCl in DME. They were characterised by 1H‐, 13C‐, 29Si‐ and 31P‐NMR spectroscopy, mass spectrometry and single crystal X‐ray diffraction. Compound 1 , recently obtained in a different way, shows an unusual trigonal planar coordination of the central phosphorus atom. However, 2 and 3 , featuring increasing covalence radii of the central atoms, show an increasingly pyramidal structure. 1 – 3 crystallise isotyp in the cubic spacegroup Pa 3, the lattice constants are: 1 : a = 1860.1(2) pm, 2 : a = 1873.6(2) pm, 3 : a = 1897.1(2) pm.  相似文献   

12.
Tris(iso‐propyl)stibine complexes of palladium and platinum of the type [MX2(SbiPr3)2] [M, X = Pd, Cl (1a), Pd, Br (1b), Pd, I (1c), Pt, Cl (2)] have been prepared and characterized by elemental analysis, IR and 1H NMR spectral data. The structure of 1a, established by X‐ray structural analysis, revealed that the palladium atom is in a square planar environment with mutually trans SbiPr3 ligands. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The bis(alkynyl)diisopropyl‐aminoboranes 7 were prepared by treatment of iPr2NBCl2 with two molar equivalents of 1‐pentynyl lithium or lithium phenylacetylenide, respectively. Their reaction with one molar equivalent of B(C6F5)3 resulted in the formation of the 1,1‐carboboration products 8 that were subsequently stabilized by adduct formation ( 9 ) with tert‐butyl isocyanide. Thermolysis of 8a (R=nPr) proceeded with hydride transfer from a N‐isopropyl substituent to the distal carbon atom of the remaining pentynyl unit at boron to give the zwitterionic five‐membered heterocyclic product 10a in good yield. The analogous product 10b (R=Ph) was obtained upon photolysis of 8b . The compounds 7b , 9b , 10a , and 10b were characterized by X‐ray crystal structure analysis.  相似文献   

14.
The reaction of LiP(H)Tipp ( 2a ) and KP(H)Tipp ( 2b , Tipp = C6H2-2,4,6-iPr3), which are accessible via metalation of Tipp-PH2 ( 1 ), with bis(4-tert-butylphenyl)phosphinic chloride yields Tipp-P=P(OM)Ar2 [M = Li ( 3a ) and K ( 3b )]. These complexes show characteristic chemical 31P shifts and large 1JPP coupling constants. These compounds degrade with elimination of the phosphinidene Tipp-P: and the alkali metal diarylphosphinites M–O–PAr2 [M = Li ( 4a ) and K ( 4b )]. The phosphinidene forms secondary degradation products (like the meso and R,R/S,S-isomers of diphosphane Tipp-P(H)–P(H)Tipp ( 5 ) via insertion into a P–H bond of newly formed Tipp-PH2), whereas the crystallization of [Tipp-P=P(OLi)Ar2 · LiOPAr2 · LiCl · 2Et2O]2 (i.e. [ 3a·4a· LiCl · 2Et2O]2) succeeds from diethyl ether. The metathesis reactions of LiP(SiiPr3)Tipp and LiP(SiiPr3)Mes (Mes = C6H2-2,4,6-Me3) with Ar2P(O)Cl yield Ar*-P=P(OSiiPr3)Ar2 (Ar* = Mes, Tipp) which degrade to Ar2POSiiPr3 and other secondary products.  相似文献   

15.
Synthesis and Characterization of New Cyclic and Cage‐like Indium — Phosphorus and Indium — Arsenic Compounds The reaction of InEt3 with H2ESiiPr3 initially yields the cyclic compound [Et2InP(H)SiiPr3]2 ( 2 ). 2 appears as a mixture of cis and trans isomers and has been characterized by 31P‐NMR spectroscopy, IR spectroscopy, and mass spectrometry. 2 decomposes in solution under elimination of ethane during a few days to form [EtInPSiiPr3]4 ( 3 ) with a cage‐like structure. The analogous arsenic compound [EtInAsSiiPr3]4 ( 4 ) can be prepared by reaction of InEt3 with H2AsSiiPr3. Central structural motif of 3 and 4 is an In4E4 heterocubane like structure (E = P, As), whereas the reaction of InEt3 with H2PSiMe2Thex (Thex = CMe2iPr) yields [EtInPSiMe2Thex]6 ( 5 ) with a hexagonal prismatic structure.  相似文献   

16.
Lithium 8‐amidoquinoline ( 1 ) and lithium 8‐(trialkylsilylamido)quinoline [SiMe2tBu ( 2 ), SiiPr3 ( 3 )] react with dimethylgallium chloride to the metathesis products dimethylgallium 8‐amidoquinoline ( 4 ) as well as dimethylgallium 8‐(trialkylsilylamido)quinoline [SiMe2tBu ( 5 ), SiiPr3 ( 6 )]. The gallium atoms are in distorted tetrahedral environments. During the synthesis of 5 , orange dimethylgallium 2‐butyl‐8‐(tert‐butyldimethylsilylamido)quinoline ( 7 ) was found as by‐product. The metathesis reactions of Me2GaCl with LiN(R)CH2Py (Py = 2‐pyridyl) yield the corresponding 2‐pyridylmethylamides Me2Ga‐N(H)CH2Py ( 8 ), Me2Ga‐N(SiMe2tBu)CH2Py ( 9 ) and Me2Ga‐N(SiiPr3)CH2Py ( 10 ). In these complexes the gallium atoms show a distorted tetrahedral coordination sphere. However, derivative 8 crystallizes dimeric with bridging amido units whereas in 9 and 10 the 2‐pyridylmethylamido moieties act as bidentate ligands leading to monomeric molecules.  相似文献   

17.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

18.
The vinyl carbenoid H2C=CBr(Li) has been used as key precursor to prepare a geminal C(sp2)-bridged phosphine-borane. Starting from bromoethene, two sequences of lithiation/electrophilic trapping, with ClPiPr2 and FBMes2 respectively, affords iPr2P–C(=CH2)–BMes2 3 [Mes = 2,4,6-(H3C)3C6H2]. This new phosphine-borane 3 was characterized by multi-nuclear NMR and mass spectroscopy. It adopts a monomeric open structure without P→B interaction. A few crystals of a secondary product 4 were analyzed by X-ray diffraction, revealing an unusual dimeric structure.  相似文献   

19.
Pr4S3[Si2O7] and Pr3Cl3[Si2O7]: Derivatives of Praseodymium Disilicate Modified by Soft Foreign Anions For synthesizing both the disilicate derivatives Pr4S3[Si2O7] and Pr3Cl3[Si2O7], Pr, Pr6O11 and SiO2 are brought to reaction with S and PrCl3, respectively, in suitable molar ratios (850 °C, 7 d) in evacuated silica tubes. By using NaCl as a flux, Pr4S3[Si2O7] crystallizes as pale green, transparent single crystals (tetragonal, I41/amd, a = 1201.6(1), c = 1412.0(2) pm, Z = 8) with the appearance of slightly compressed octahedra. On the other hand, Pr3Cl3[Si2O7] emerges as pale green, transparent platelets and crystallizes monoclinically (space group: P21, a = 530.96(6), b = 1200.2(1), c = 783.11(8) pm, β = 109.07(1)°, Z = 2). In both crystal structures ecliptically conformed [Si2O7]6– units of two corner‐linked [SiO4] tetrahedra with Si–O–Si bridging angles of 131° in the sulfide and 148° in the chloride disilicate are present. In Pr4S3[Si2O7] both crystallographically independent Pr3+ cations show coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) and 9 (3 S2– and 6 O2–). For Pr1, Pr2 and Pr3 in Pr3Cl3[Si2O7] coordination numbers of 10 (5 Cl and 5 O2–) and 9 (2 ×; 4 Cl and 5 O2– or 3 Cl and 6 O2–, respectively) occur.  相似文献   

20.
Cyclopropylidene is a transient intermediate of the allene–propyne–cyclopropene isomerization. The incorporation of heavier Group 14 elements into the cyclopropylidene scaffold has to date been restricted to the formal replacement of the carbenic carbon atom by a base‐coordinated silicon(II) center. Herein we report the synthesis and characterization of NHC‐coordinated heavier cyclopropylidenes (Si2GeR3X, and Si3R3Br; X=Cl, Mes; R=Tip=2,4,6‐iPr3C6H2) in which the three‐membered ring is exclusively formed by silicon and germanium. In case of the chloro‐substituted Si2Ge‐cyclopropylidene, a stable heavier cycloprop‐1‐yl‐2‐ylidene cation is obtained by NHC‐induced chloride dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号