首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hetero-Diels-Alder cycloaddition of acylnitroso dienophile 4 with the N-(butadienyl)pyrrolidinone derivatives 2a , b led with complete regioselectivity to the oxazine adducts 5a , b (Scheme 1). Sequential osmylation, protection of the ensuing glycol, and reduction of the N? O bond gave the expected hemiaminals 11a , b which were characterized by their crystalline sulfite adducts 12a , b (Schemes 1 and 2). Deprotection and saponification of the latter led to aminodeoxyerythrose and to aminodeoxyribose derivatives as an equilibrium of pyrrolidinose equivalents, i.e., hemiaminals 14a , b , imines 14′a , b , and dimers 14″a , b , respectively (Scheme 3). Hydrocyanic acid addition to 11a , b led ultimately to the proline derivatives 16a , b (Scheme 2). Compound 11b proved to be an inhibitor of syncytium formation in AIDS-infected cells.  相似文献   

2.
Cyclopentane derivatives bearing a 3-(hydroxymethyl) group, a 4-(2-hydroxyethyl) functionality, and a nucleoside base are carbocyclic variants of nucleoside analogs previously described as building blocks for the preparation of oligonucleotide analogs having dimethylene sulfone (= methanosulfonylmethano) linking groups replacing the phosphodiester linking units found in natural oligonucleotides. These carbocyclic nucleoside analogs (e.g. 17 and 20 ) are stable to both acid-catalyzed depurination and base-catalyzed hydrolysis, in contrast with most non-ionic analogs of oligonucleotides. Furthermore, they can be prepared with complete control over the stereochemistry at the ‘anomeric’ center. A procedure is given for preparing these purine-nucleoside analogs via the construction of an enantiomerically pure carbocyclic skeleton (Schemes 1–3), followed by a Mitsunobu-type reaction to introduce the purine-base derivatives (Scheme 4). Furthermore, preliminary results for the coupling of these analogs to yield nucleoside dimers (e.g. 26 ) are also reported (Scheme 5).  相似文献   

3.
The ‘click synthesis’ of some novel O‐substituted oximes, 5a – 5j , which contain heterocycle residues, as new analogs of ß‐adrenoceptor antagonists is described (Scheme 1). The synthesis of these compounds was achieved in four steps. The formation of (E)‐2‐(1H‐benzo[d]imidazol‐1‐yl)‐1‐phenylethanone oxime, followed by their reaction with 2‐(chloromethyl)oxirane, afforded mixture of oil compounds 3 and 4 , which by a subsequent tetra‐n‐butylammonium bromide (TBAB)‐catalyzed reaction with N H heterocycle compounds (Scheme 1), led to the target compounds 5a – 5j in good yields.  相似文献   

4.
On irradiation in the presence of Fe(CO)5, the allenic amides and imides showed a similar course of complexation to that of esters and lactones, respectively, e.g. the amides of type 10 led to diiron complexes of type 11 (Scheme 3), whereas the imide 12 yielded a mixture of a dinuclear and two mononuclear complexes ( 13–15 , Scheme 4). The racemic ester 6 also gave mononuclear ( 7a , 7b , and 9 ) and dinuclear complexes (8 a and 8b ; Scheme 2). In case of the allenic acid 4 , only complexation of type 5 was observed (Scheme 1).  相似文献   

5.
The desulfurization of several N,2-diaryl-5-(arylimino)-2,5-dihydro-4-nitroisothiazol-3-amines 5 with Ph3P led to complex mixtures of products in low yields. For instance, quinoxaline-2-carboxamide 1-oxides of type 6 (Scheme 2) and, in some cases, also 3-nitroquinolines of type 7 (Scheme 5) were isolated. By the desulfurization of the substituted derivatives 5b – e , a rearrangement of the intermediates yielded 6 and 7 with a different substitution pattern from that expected from the starting materials (Scheme 3). The additional formation of two isomeric 1,2,5-oxadiazole-3-carboxamides 8 was observed only in the case of 5d (R1=R2=F) (Scheme 6). Under the same reaction conditions, the major product of the desulfurization of 5c was the quinoxaline-2-carboxamide 1-oxide 9 (Scheme 7). Reaction mechanisms involving intermediate ketene imines and O transfer from the NO2 group to the neighboring ketene imine are proposed. The structures of 6a , 6e , 6k , 7b , and 8d were established by X-ray crystallography, while the structure of 9 was elucidated by 2D-NMR spectroscopy and corroborated by X-ray crystallography.  相似文献   

6.
Formal Total Synthesis of (±)-Isocomen by Application of the α-Alkinon Cyclization A total synthesis of the racemic form of the sesquiterpene isocomene ( A ) was accomplished by application of the cyclopentenone anellation B→D (Scheme 1) which includes the α-alkynone cyclization C→D , a gas-phase flow thermolytic process. Starting with the known product 2 (Scheme 3) of the anellation B→D , the elaboration of ring C of A proceeded in 9 steps to the α-alkynone 16 (Scheme 5) which was cyclized at 540° selectively to give the angularly fused triquinane 4 (77%). A two-step procedure then led to 5 (Scheme 6), a last but one intermediate in a known total synthesis of (±)- A . The conversion of 16 to 4 also demonstrated the compatibility of an acetoxy function with the anellation sequence B→D .  相似文献   

7.
A novel and efficient isocyanide‐based multicomponent reaction between alkyl or aryl isocyanides 1 , 2,3‐diaminomaleonitrile ( 2 ), naphthalene‐2,3‐diamines ( 6 ) or benzene‐1,2‐diamine ( 9 ), and 3‐oxopentanedioic acid ( 3 ) or Meldrum's acid ( 4 ) or ketones 7 was developed for the ecologic synthesis, at room temperature under mild conditions, of 1,6‐dihydropyrazine‐2,3‐dicarbonitriles 5a – 5f in H2O without using any catalyst, and of 3,4‐dihydrobenzo[g]quinoxalin‐2‐amine and 3,4‐dihydro‐3,3‐dimethyl‐quinoxalin‐2‐amine derivatives 8a – 8g and 10a – 10e , respectively, in the presence of a catalytic amount of p‐toluenesulfonic acid (TsOH) in EtOH, in good to excellent yields (Scheme 1).  相似文献   

8.
The synthesis of azoacetylenes (=dialkynyldiazenes) 1 and 2 has been investigated. They represent a still elusive class of chromophores with potentially very interesting applications as novel bistable photochemical molecular switches or as antitumor agents (Fig. 1). Our synthetic efforts have led us alongside three different approaches (Scheme 1). In a first route, it was envisioned to generate the azo (=diazene) bond by photolysis of N,N′‐dialkynylated 1,3,4‐thiadiazolidine‐2,5‐diones that are themselves challenging targets (Scheme 2). Attempts are described to obtain the latter by alkynylation of the parent heterocycle with substituted alkynyliodonium salts. In a conceptually similar approach, the no‐less‐challenging dialkynylated 9,10‐dihydro‐9,10‐diazanoanthracene ( 29 ) was to be generated by alkynylation of the unsubstituted hydrazine 28 (Scheme 6). In a second route, the generation of the N?N bond from Br‐substituted divinylidenehydrazines (ketene‐azines) 35 was attempted in a synthetic scheme involving an aza‐Wittig reaction between azinobis(phosphorane) 36 and (triisopropylsilyl)ketene 37 (Scheme 7). Finally, a third approach, based on the formation of the central azo bond as the key step, was explored. This route involved the extrapolation of a newly discovered condensation reaction of N,N‐disilylated anilines with nitroso compounds (Scheme 11, and Tables 1 and 2) to the transformation of N,N‐disilylated ynamine 55 and nitroso‐alkyne 54 (Scheme 13).  相似文献   

9.
The synthesis of methyl N‐(1‐aza‐6‐oxaspiro[2.5]oct‐1‐en‐2‐yl)‐L ‐prolinate ( 1e ) has been performed by consecutive treatment of methyl N‐[(tetrahydro‐2H‐pyran‐4‐yl)thiocarbonyl]‐L ‐prolinate ( 5 ) with COCl2, 1,4‐diazabicyclo[2.2.2]octane (DABCO), and NaN3 (Scheme 1). As the first example of a novel class of dipeptide synthons, 1e has been shown to undergo the expected reactions with carboxylic acids and thioacids (Scheme 2). The successful preparation of the nonapeptide 16 , which is an analogue of the C‐terminal nonapeptide of the antibiotic Trichovirin I 1B, proved that 1e can be used in peptide synthesis as a dipeptide building block (Scheme 3). The structure of 7 has been established by X‐ray crystal‐structure analysis (Figs. 1 and 2).  相似文献   

10.
Reaction of 2,2-dialkyl-3-(dimethylamino)-2H-azirines 1a and 1b with 2,3-pyridinedicarboximide ( 4 ) in MeCN or DMF at room temperature yielded two regioisomeric tricyclic 1:1 adducts, the azacyclols 11/12 and 16/17 , respectively (Schemes 3 and 4). The structure of 12 was established by X-ray crystallography. Methanolysis of 11/12 and 16/17 led to mixtures of methyl [4, 4-dialkyl-5-(dimethylamino)-4H-imidazol-2-yl] pyridine carboxylates 13/14 and 18/19 , respectively. The structure of compound 14 is closely related to that of the powerful herbicide 9 (Scheme 9), i.e. the described reactions offer a new synthetic approach to this class of compounds. A mechanistic interpretation for the formation of regioisomeric 1:1 adducts as well as methyl (imidazol-2-yl) pyridine carboxylates is depicted in Scheme 5.  相似文献   

11.
Treatment of 2,2,4,4‐tetramethylcyclobutane‐1,3‐dione ( 6 ) in THF with CF3SiMe3 in the presence of tetrabutylammonium fluoride (TBAF) yielded the corresponding 3‐(trifluoromethyl)‐3‐[(trimethylsilyl)oxy]cyclobutanone 7 (Scheme 1) via nucleophilic addition of a CF anion at the CO group and subsequent silylation of the alcoholate. Under similar conditions, the ‘monothione' 1 reacted to give thietane derivative 8 (Scheme 2), whereas in the case of ‘dithione' 2 only the dispirodithietane 9 , the dimer of 2 , was formed (Scheme 3). A conceivable mechanism for the formation of 8 is the ring opening of the primarily formed CF3 adduct A followed by ring closure via the S‐atom (Scheme 2). In the case of thiobenzophenones 4 , complex mixtures of products were obtained including diarylmethyl trifluoromethyl sulfide 10 and 1,1‐diaryl‐2,2‐difluoroethene 11 (Scheme 4). Obviously, competing thiophilic and carbophilic addition of the CF anion took place. The reaction with 9H‐fluorene‐9‐thione ( 5 ) yielded only 9,9′‐bifluorenylidene ( 14 ; Scheme 6); this product was also formed when 5 was treated with TBAF alone. Treatment of 4a with TBAF in THF gave dibenzhydryl disulfide ( 15 ; Scheme 7), whereas, under similar conditions, 1 yielded the 3‐oxopentanedithioate 17 (Scheme 9). The reaction of dithione 2 with TBAF led to the isomeric dithiolactone 16 (Scheme 8), and 3 was transformed into 1,2,4‐trithiolane 18 (Scheme 10).  相似文献   

12.
主体环糊精聚合物(β-CDE)与客体疏水改性丙烯酰胺共聚物P(AM/POEA)构成超分子结构的高分子识别体系. 这种客体聚合物是含有少量疏水体(xPOEA<0.01)的水溶性聚合物, NMR测定结果表明β-CDE和P(AM/POEA)的主客体相互作用是通过环糊精空腔和疏水体POEA形成包结络合物进行的. 在P(AM/POEA)聚合物水溶液中加入β-CDE, 由于主客体聚合物相互作用出现粘度的大幅上升, 增粘的幅度可通过改变聚合物浓度和疏水体含量来调节, 同时对盐浓度和温度的影响也进行了研究. 通过透射电镜直观观察的结果表明, 此类缔合聚合物体系的主客体相互作用生成实心球状多分子聚集体.  相似文献   

13.
The Synthesis of 4-Halogen-substituted Analogs of Trimethoprim The four 2,4-diamino-5-(4-halo-3,5-dimethoxybenzyl)pyrimidines 20a-d have been synthesized along known routes, i.e. form the corresponding aldehydes 17a-d via the aminomethylidene-derivatives 18a-d and 19a-d , respectively (Scheme 4). All four aldehydes were prepared from a common intermediate, methyl 4-amino-3,5-dimethoxybenzoate ( 3 ), which was obtained from dimethyl 2,6-dimethoxyterephthalate ( 2 ) and hydroxylamine in a regioselective Lossen-type rearrangement mediated by polyphosphoric acid (Scheme 1). Under identical rearrangement conditions 2,6-diethoxyterephthalate ( 12 ) led, in addition to the amine 14 , to the benzoxazolone 15 (Scheme 2). Scope and mechanism of this reaction are discussed. - The antimicrobial activity of the diamino-pyrimidines 20a-d , expressed as the inhibition of E. coli-dihydrofolate reductase, has been measured and compared with that of trimethoprim ( 1 ), an established antimicrobial agent.  相似文献   

14.
In the context of our aim of discovering new antitumor drugs among synthetic γ‐lactone‐ and γ‐lactam‐fused 1‐methylquinolin‐4(1H)‐ones, we developed a rapid access to 5‐methyl‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinoline‐8,9(5H,6H)‐dione ( 9 ) exploiting the γ‐lactone‐fused chloroquinoline 10 previously synthesized in our laboratory (Scheme 1). We also elaborated efficient synthetic methods allowing for a rapid access to two nonclassical bioisosteres of 9 , i.e., a deoxy and a carba analogue. The deoxy analogue 11 was prepared in two steps from the γ‐lactone‐fused quinoline 13 which was also the synthetic precursor of 10 (Scheme 1). The carba analogue 6,9‐dihydro‐5‐methyl‐9‐methylene‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinolin‐8(5H)‐one ( 12 ) was easily prepared by HCl elimination from the 9‐(chloromethyl)dioxolofuroquinoline 15 , which was obtained via a three‐component one‐pot reaction from N‐methyl‐3,4‐(methylenedioxy)aniline (=N‐methyl‐1,3‐benzodioxol‐5‐amine; 16 ), commercially available chloroacetaldehyde, and tetronic acid ( 17 ) (Scheme 2).  相似文献   

15.
The synthesis of novel 2,2‐disubstituted 2H‐azirin‐3‐amines with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers (1′R,2R)‐ 4a – e and (1′R,2S)‐ 4a – e (Scheme 1, Table 1), which are synthons for the (R)‐ and (S)‐isomers of isovaline, 2‐methylvaline, 2‐cyclopentylalanine, 2‐methylleucine, and 2‐(methyl)phenylalanine, respectively. The configuration at C(2) of the synthons was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group. The reaction of 4 with thiobenzoic acid, benzoic acid, and the dipeptide Z‐Leu‐Aib‐OH ( 12 ) yielded the monothiodiamides 10 , the diamides 11 (Scheme 2, Table 3), and the tripeptides 13 (Scheme 3, Table 4), respectively.  相似文献   

16.
The reaction of 2-(1-phenylvinyl)aniline and 4-chloro-2-(1-phenylvinyl)aniline with acetophenone derivatives, 1-(naphthalen-1-yl)ethanone and 1-(furan-2-yl)ethanone in toluene at 110–115° with toluene-4-sulfonic acid as a catalyst leads in good-to-excellent yields to the 2,2-disubstituted 1,2-dihydro-4-phenyl-quinolines 1–18 (Scheme 1, Table). The structure of the new racemic 1,2-dihydroquinolines 1–18 is determined by NMR spectroscopy. A reaction mechanism proceeding via a 6π-electrocyclic rearrangement of 2-(1-phenylvinyl)anils 19 as the key step is proposed for the formation of these compounds (Scheme 1). The scope and limitations of the novel methods are discussed (Scheme 2).  相似文献   

17.
The products formed on UV irradiation of several tricyclic compounds (i.e. 3 , 6 , 8 , 15 , and 17 , Schemes 2-4) were studied in detail. A marked dependence of the reaction course on the type and site of substitution was found. Among the several light-induced transformations, a novel rearrangement, i.e. 11 to 9 (Scheme 3) was identified. The formation of the polycyclic compound 13 on irradiation of 8a (Scheme 3) resulted from an unexpected skeletal rearrangement with dearomatization of one benzene ring. The structures of compounds 10 , 11 , and 13 were established by X-ray crystallography (Figs. 1-3). An attempt was made to give a general mechanistic picture of all observed photochemical results (Schemes 4-6).  相似文献   

18.
The synthesis of 4,6,8-trimethyl-1-[(E)-4-R-styryl]azulenes 5 (R=H, MeO, Cl) has been performed by Wittig reaction of 4,6,8-trimethylazulene-1-carbaldehyde ( 1 ) and the corresponding 4-(R-benzyl)(triphenyl)phosphonium chlorides 4 in the presence of EtONa/EtOH in boiling toluene (see Table 1). In the same way, guaiazulene-3-carbaldehyde ( 2 ) as well as dihydrolactaroviolin ( 3 ) yielded with 4a the corresponding styrylazulenes 6 and 7 , respectively (see Table 1). It has been found that 1 and 4b yield, in competition to the Wittig reaction, alkylation products, namely 8 and 9 , respectively (cf. Scheme 1). The reaction of 4,6,8-trimethylazulene ( 10 ) with 4b in toluene showed that azulenes can, indeed, be easily alkylated with the phosphonium salt 4b . 4,6,8-Trimethylazulene-2-carbaldehyde ( 12 ) has been synthesized from the corresponding carboxylate 15 by a reduction (LiAlH4) and dehydrogenation (MnO2) sequence (see Scheme 2). The Swern oxidation of the intermediate 2-(hydroxymethyl)azulene 16 yielded only 1,3-dichloroazulene derivatives (cf. Scheme 2). The Wittig reaction of 12 with 4a and 4b in the presence of EtONa/EtOH in toluene yielded the expected 2-styryl derivatives 19a and 19b , respectively (see Scheme 3). Again, the yield of 19b was reduced by a competing alkylation reaction of 19b with 4b which led to the formation of the 1-benzylated product 20 (see Scheme 3). The ‘anil synthesis’ of guaiazulene ( 21 ) and the 4-R-benzanils 22 (R=H, MeO, Cl, Me2N) proceeded smoothyl under standard conditions (powered KOH in DMF) to yield the corresponding 4-[(E)-styryl]azulene derivatives 23 (see Table 4). In minor amounts, bis(azulen-4-yl) compounds of type 24 and 25 were also formed (see Table 4). The ‘anil reaction’ of 21 and 4-NO2C6H4CH=NC6H5 ( 22e ) in DMF yielded no corresponding styrylazulene derivative 23e . Instead, (E)-1,2-bis(7-isopropyl-1-methylazulen-4-yl)ethene ( 27 ) was formed (see Scheme 4). The reaction of 4,6,8-trimethylazulene ( 10 ) and benzanil ( 22a ) in the presence of KOH in DMF yielded the benzanil adducts 28 to 31 (cf. Scheme 5). Their direct base-catalyzed transformation into the corresponding styryl-substituted azulenes could not be realized (cf. Scheme 6). However, the transformation succeeded smoothly with KOH in boiling EtOH after N-methylation (cf. Scheme 6).  相似文献   

19.
Attempted Synthesis of Calicene from Trisubstitued Cyclopropanes and Cyclopentenone The Li carbenoids 4 , prepared by treatment of substituted 1,1-dihalocyclopropanes with BuLi, are reacted with cyclopent-2-enone under thermodynamic and kinetic control (Scheme 1). In general, the latter procedure gives better yields of cyclopropylcyclopentenols 5a – e , but the reaction seems to be controlled mainly by the steric and electronic properties of the substituent Y. So, with 4b and 4e , the main reaction is the attack of the carbenoid at C(1) of cyclopent-2-enone, while 4a (Y = PhS) predominantly deprotonates the ketone (Scheme 4). Whereas 5d and 5e can easily be converted to the dihydrocalicenes 6d and 6e (Scheme 6), the attempted elimination of H2O from 5a – c leads to the rearranged products 13 – 2 due to the opening of the cyclopropane ring (Scheme 5). Finally, the generation of the parent compound 2 from the silylated precursor 6d is attempted: treatment with MeO? gives the addition products 18A/18B , while the reaction with Br2 provides 19 by a bromination/dehydrobromination sequence (Scheme 7).  相似文献   

20.
Yeast reduction of rac-ethyl 2-methyl-6-oxocylohexanecarboxylate (rac- 1 ) yielded selectively (+)-ethyl 2-hydroxy-6-methylcyclohexane carboxylate (+)- 2 (Scheme 1) which has been alkylated with 5-iodo-2-methylbut-2-ene by (the dianion method to furnish the 4-methylbut-3-enyl derivat 3 (Scheme 3)). NaBH4 reduction of (+)- 1 led to three hydroxy-carboxylates (?)- 2 , (+)- 5 , and (?) -6 (Scheme 4). Allylation of the dianion of (+)- 5 afforded (+)- 7 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号