首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound was prepared by ion exchange from the potassium salt, K12P12O36 · 19/2H2O. It represents a second new structural type of [P12O36]12? ring anions. This sparingly water soluble salt is hexagonal, space group P63, with Z = 2 and the cell dimensions: a = 15.904(7), c = 16.67(2) Å. The crystal structure was solved by direct methods and refined to a final R value of 0.050. The ring anion is located around the threefold axis and hence has a threefold symmetry. The stacking of the rings creates large channels, parallel to the c direction, in which the guanidinium groups and the water molecules are located. Three of the six independent guanidinium groups are located on the threefold axes. The cohesion of the structure is performed by the numerous H-bonds generated by the organic cations and the water molecules.  相似文献   

2.
Te(OH)6 · 2Na3P3O9 · 6H2O, is hexagonal (P63/m) with a = 11,67(1), c = 12,12(1) Å, Z = 2 and Dx = 2,225 g/cm3. Te(OH)6 · K3P3O9 · 2H2O, is monoklin (P21/c) with a = 19,61(5), b = 7,456(1), c = 14,84(6) Å, = 108,01(4), Z = 4 and Dx = 2,506 g/cm3. Both compounds are the first examples of phosphate tellurates in which the anion phosphate is condensed to the ring anion P3O9. As in phosphate tellurates already described the phosphate groups are independent of the TeO6 octahedra.  相似文献   

3.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

4.
Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O – A Telluric Acid-rich Inclusion Compound Single crystals of Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O have been grown from aqueous solution. It crystallizes triclinically in space group P1 with Z = 1, a = 1 086.6(1), b = 1 095.6(1), c = 1 105.5(1) pm, α = 118.83(1), β = 106.22(1) and γ = 100.00(1)°. X-ray structure determination (5 755 reflections, 251 parameters, Rg = 0.0355) revealed an infinite chain consisting of hydrogen bonded (OH …? O 259.4(5) – 267.4(6) pm) Te(OH)6 molecules and [TeMo6O24]6? anions to be the Prominent structural feature. Further hydrogen bonds between neighbouring Te(OH)6 molecules connect these chains to yield a two-dimensionally infinite arrangement.  相似文献   

5.
The calcium salts Ca2P2O6 · 2H2O ( 1 ) and [Ca(H2O)3(H2P2O6)] · 0.5(C12H24O6) · H2O ( 2 ) were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pbca and compound 2 in the monoclinic space group P21/n. The crystal structure of compound 1 consists of chains of edge‐sharing [CaO7] polyhedra linked by hypodiphosphate(IV) anions to form a three‐dimensional network. The crystal structure of compound 2 consists of alternated layers of crown ether and water molecules and respective ionic units. Within the layers of ionic units the Ca2+ cations are octahedrally coordinated by three monodentate dihydrogenhypodiphosphate(IV) anions and three water molecules. The IR/Raman spectra of the title compounds were recorded and interpreted, especially with respect to the [P2O6]4– and [H2P2O6]2– groups. The phase purity of 2 was verified by powder diffraction measurements.  相似文献   

6.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

7.
Synthesis and Crystal Structure Determination of Pb2P4O12 · 3 H2O Pb2P4O12 · 3 H2O precipitates at mixing aqueous solutions of Pb(NO3)2 and Na4P4O12 (25°C). Crystal growth was achieved by applying gel-techniques (Agar-Agar-gel). The crystal structure (P1 , a = 786.4(3), b = 914.4(3), c = 1021.6(3) pm, α = 97.42(2)°, β = 100.63(2)°, γ = 114.92(2)°; Z = 2; 4160 unique diffractometer data, R = 0.05) contains cyclo-tetraphosphate anions with point symmetry D2d. Lead is coordinated by eight oxygen, the polyhedra deriving from a square antiprism.  相似文献   

8.
Synthesis, IR Spectrum, and Crystal Structure of Sb12O18(OH)2Cl22 · 2CH2Cl2 The title compound has been prepared by the reaction of Sb5O7Cl11 with dichloromethane at 20°C, forming colourless, moisture sensitive crystals. Sb12O18(OH)2Cl22 · 2CH2Cl2 crystallizes monoclinically in the space group P21/n with two formula units per unit cell. Structure solution with 2696 unique observed reflections, R = 0.042. Lattice dimensions at 19°C: a = 1350.2, b = 1466.7, c = 1392.9 pm, b? = 97.925°. The distorted octahedrally coordinated antimony atoms, bridged by oxygen atoms, exhibit a molecular array which may be seen as a fragment of the rutile type structure, isolated by terminal chloride ligands. The solvate molecule is associated by a hydrogen bridge OH···Cl.  相似文献   

9.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

10.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

11.
Crystal Structure of Lead Cyclotetraphosphate-2-Hydrate, Pb2P4O12 · 2H2O By heating of Pb2P4O12 · 4 H2O crystals at 100°C, Pb2P4O12 · 2 H2O is formed topotactically. The triclinic crystals are twinned on (010). Space group: P1 , unit cell: a = 8.02 ± 0.02, b = 10.58 ± 0.02, c = 7.53 ± 0.02 Å, α = 98.8 ± 0.2, β = 108.7 ± 0.2, γ = 82.6 ± 0.3°. The crystal structure was determined by Patterson and Fourier methods and refined by least-squares calculations. The structure consists of two crystallographically different P4O124? ring anions, point symmetry 1 , connected by Pb and hydrogen bonds. Both Pb atoms are coordinated by eight oxygen atoms. The polyhedra of either Pb are interconnected by common edges forming sheets and chains. Pb(1) is joined with four, Pb(2) with five P4O124? anions.  相似文献   

12.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

13.
Supramolecular aspects on Te(OH)6 as substitute for crystal‐water in adenine hydrate complexes and the first disodium ditellurate(VI) are reported. The co‐crystallate [Te(OH)6 · 2 adenine · 4 H2O] ( 1 ) has been prepared in 41% yield from the 1 : 1 mixing of Te(OH)6 with the nitrogenous base adenine. The adduct of infinite stacks of adenine molecules, Te(OH)6 and water not only proves that Te(OH)6 mimicks the role of water in the related hydrate adenine · 3 H2O but also shows that the inclusion of Te(OH)6 raises the number of HO–H and N–HO contacts and therefore increases the distance between the adenine rings to 3.31 Å in 1 in comparison to that in adenine trihydrate (3.22 Å). Additionally, the disodium ditellurate(VI) aggregate {[Te2(O)2(OH)6(ONa)2]2 [NaOH · 12.5 H2O]} ( 2 ) resulted from the reaction of 1 with 2 molar equivalents of aqueous NaOH. Dinuclear 2 represents the first X‐ray diffraction characterized example of a sodium tellurate(VI) constructed from [Te2O4(OH)6]2– dianions.  相似文献   

14.
An Anionic Oxohydroxo Complex with Bismuth(III): Na6[Bi2O2(OH)6](OH)2 · 4H2O Colourless, plate‐like, air sensitive crystals of Na6[Bi2O2(OH)6](OH)2 · 4H2O are obtained by reaction of Bi2O3 or Bi(NO3)3 · 5H2O in conc. NaOH (58 wt %) at 200 °C followed by slow cooling to room temperature. The crystal structure (triclinic, P 1¯, a = 684.0(2), b = 759.8(2), c = 822.7(2) pm, α = 92.45(3)°, ß = 90.40(3)°, γ = 115.60(2)°, Z = 1, R1, wR2 (all data), 0, 042, 0, 076) contains dimeric, anionic complexes [Bi2O2(OH)6]4— with bismuth in an ψ1‐octahedral coordination of two oxo‐ and three hydroxo‐ligands. The thermal decomposition was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In the final of three steps the decomposition product is Na3BiO3.  相似文献   

15.
The crystal structure of cadmium copper hydroxide nitrate, CdCu3 (OH)6 (NO3)2 · H2O, has been determined from three dimensional single crystal X-ray data. One single elementary cell of the compound has to be of triclinic symmetry, but as either the crystal is built up from such triclinic domains grown together regularly at angles of 120 degrees, or the nitrate groups of the whole crystal are distributed statistically over three possible orientations standing at 120 degree angles respectively to each other, the structure can also be described in the hexagonal system: a = 6.522 ± 0.005 Å, c = 7.012 ± 0.006 Å, space group DP 3 m 1, cell content one formula unit. Mixed layers (00.1) of Cu and Cd atoms are embedded between layers consisting of the OH groups and one oxygen atom per nitrate group. The nitrate groups extend with their trigonal plane nearly perpendicular to the layers (00.1) and connect them by hydrogen bridges between the remaining two oxygen atoms and OH groups of the next layer. The Cd atoms are coordinated octahedrally by six equidistant OH groups, and the Cu atoms have a strongly distorted octahedral (4 + 2) coordination with four OH groups and two nitrate oxygens. Thermogravimetric measurements allowed to distinguish the crystal water molecule from variable amounts of excess water. The hydrogen bonds between OH groups and nitrate oxygen atoms and the deformation of the nitrate groups were confirmed by infrared spectra.  相似文献   

16.
A new ammonium vanadium tellurate, (NH4)4{(VO2)2[Te2O8(OH)2]}·2H2O ( 1 ) was hydrothermally synthesized and characterized by elemental analyses, IR spectrum, TG analysis, and single crystal X–ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, a = 7.3843(15) Å, b = 17.111(3) Å, c = 7.3916(15) Å, β = 118.88(3)°, V = 817.9(3) Å3, Z = 2, R1 (I>2σ(I)) = 0.0235, wR2 (all data) = 0.0462. The structure of 1 consists of infinite anionic chains, {(VO2)2[Te2O8(OH)2]}4? which contain octahedral VO6 and TeO5OH units. Each octahedral VO6 and TeO5OH unit is connected by sharing an edge to form V2O10 and Te2O8(OH)2 binuclear units. The V2O10 and Te2O8(OH)2 binuclear units are alternatively connected to one another, creating complete infinite {(VO2)2[Te2O8(OH)2]}4? chains along the c direction. The anionic chains are separated by ammonium cations and water molecules that link the chains through a network of hydrogen bonds. In addition, the structure contains an extended network of O–H·····O hydrogen bonds between the chains.  相似文献   

17.
Synthesis and Crystal Structure of Cobalt(II)-hexaoxodiphosphate(P? P)(4?)-dodecahydrate, Co2P2O6 · 12 H2O Co2P2O6 · 12H2O was obtained by cleavage and simultaneous oxidation of cyclo-hexaphosphate(III) in a solution of ethanol and aqueous ammonia. The crystal structure has been determined (1 898 independent diffractometer data): space group Pbam (No. 55), a = 6.710(2), b = 12.196(2), c = 10.073(3) Å, V = 825.3(1) Å3, Z = 2, R = 0.060. The P2O64? anions show site symmetry C2h and are connected to form chains via cobalt. Two cobalt ions together with two sets of four water molecules and two oxygen atoms of P2O64? form pairs of edge connected octahedra. The common edges are formed by the oxygen atoms of the P2O6 groups.  相似文献   

18.
Synthesis and Characterization of the Fullerene Co-Crystals C60 · 12 C6H12, C70 · 12 C6H12, C60 · 12 CCl4, C60 · 2CHBr3, C60 · 2CHCl3, C60 · 2H2CCl2 By crystallization of fullerenes from non-polar solvents (C6H12, CCl4, CHBr3, CHCl3, H2CCl2) compounds of the following compositions were obtained: C60 · 12C6H12, C70 · 12C6H12, C60 · 12CCl4, C60 · 2CHCl3, C60 · 2CHBr3 and C60 · 2H2CCl2. Lattice parameters have been determined by X-ray diffraction of powder samples; according to single-crystal examinations on C60 · 12C6H12, C60 · 12CCl4 and C60 · 2CHBr3 the fullerene is orientationally disordered. C60 · 12C6H12, cubic, a = 28.167(1) Å; C70 · 12C6H12, cubic, a = 28.608(2) Å; C60 · 12CCl4, cubic, a = 27.42(1) Å; C60 · 2CHBr3, hexagonal, a = 10.212(1), c = 10.209(1) Å; C60 · 2CHCl3, hexagonal, a = 10.08(1), c = 10.11(2) Å; C60 · 2H2CCl2, tetragonal, a = 16.400(1) Å, c = 11.645(7) Å.  相似文献   

19.
IntroductionThesynthesisandsorptionpropertiesofopenframe worksolidssuchaszeolites1andmetalmolybdenumphos phate2 ,3withlargecavitiesprovokedenormousinterestbe causeoftheirpotentialapplicationincatalysis .One ,two andthree dimensionalsolidcompoundsconsistingo…  相似文献   

20.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号