首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The preparation of tetraethynylethene (3,4-diethynylhex-3-ene-1,5-diyne) 1 as well as of a great diversity of differentially mono-, di-, and triprotected derivatives by newly developed synthetic routes is described. These fully cross-conjugated molecules are versatile building blocks and precursors to two-dimensional all-C networks and novel C-rich nanoarchitecture with unusual structural and electronic properties, such as perethynylated expanded radialenes, or molecular wires and polymers with the novel polytriacetylene backbone. A key step in all of these routes was the Corey-Fuchs dibromoolefination of aldehydes and ketones. Dibromoolefination of silyl-protected penta-1,4-diyn-3-ones yielded the corresponding dibromomethylidene derivatives which, by twofold Pd-catalyzed alkyne coupling, were transformed into tetraethynylethene derivatives. In routes to tetraethynylethenes with free cis-or trans-enediyne moieties, dibromoolefination of aldehyde groups produced geminal dibromoethenes which, upon elimination/metallation with LDA followed by quenching with H+ or other electrophiles, yielded free or substituted ethynyl groups in high yields. Tetra- and triprotected tetraethynylethenes are rather stable compounds that could be isolated in pure form, whereas derivatives with two or more free ?C? H termini were only stable in dilute solution and polymerized rapidly in pure form. A trans-bis(triisopropylsilyl)-protected derivative represented an exception and could be isolated as stable crystals. X-Ray analysis revealed that the two bulky (i-Pr)3Si groups isolate the reactive chromophores from one another in the crystal and prevent intermolecular reactions. The structures of several tetraethynylethenes were revealed in high-quality X-ray crystal structures.  相似文献   

2.
The synthesis of (E)-hex-3-ene-l, 5-diynes and 3-methylidenepenta-1, 4-diynes with pendant methano[60]-fullerene moieties as precursors to C60-substituted poly(triacetylenes) (PTAs, Fig. 1) and expanded radialenes (Fig. 2) is described. The Bingel reaction of diethyl (E)-2, 3-dialkynylbut-2-ene-1, 4-diyl bis(2-bromopropane-dioates) 5 and 6 with two C60 molecules (Scheme 2) afforded the monomeric, silyl-protected PTA precursors 9 and 10 which, however, could not be effectively desilylated (Scheme 4). Also formed during the synthesis of 9 and 10 , as well as during the reaction of C60 with thedesilylated analogue 16 (Scheme 5 ), were the macrocyclic products 11, 12 , and 17 , respectively, resulting from double Bingel addition to one C-sphere. Rigorous analysis revealed that this novel macrocyclization reaction proceeds with complete regio- and diastereoselectivity. The second approach to a suitable PTA monomer attempted N, N′-dicyclohexylcarbodiimide(DCC)-mediated esterification of (E)-2, 3-diethynylbut-2-ene-l, 4-diol ( 18 , Scheme 6) with mono-esterified methanofullerene-dicarboxylic acid 23 ; however, this synthesis yielded only the corresponding decarboxylated methanofullerene-carboxylic ester 27 (Scheme 7). To prevent decarboxylation, a spacer was inserted between the reacting carboxylic-acid moiety and the methane C-atom in carboxymethyl ethyl 1, 2-methano[60]fullerene-61, 61-dicarboxylate ( 28 , Scheme 8), and DCC-mediated esterification with diol 18 afforded PTA monomer 32 in good yield. The formation of a suitable monomeric precursor 38 to C60-substituted expanded radialenes was achieved in 5 steps starting from dihydroxyacetone (Schemes 9 and 10), with the final step consisting of the DCC-mediated esterification of 28 with 2-[1-ethynyl(prop-2-ynylidene)]propane-1, 3-diol ( 33 ). The first mixed C60-C70 fullerene derivative 49 , consisting of two methano[60]fullerenes attached to a methano[70]fullerene, was also prepared and fully characterized (Scheme 13). The Cs-symmetrical hybrid compound was obtained by DCC-mediated esterification of bis[2-(2-hydroxy-ethoxy)ethyl] 1, 2-methano[70]fullerene-71, 71-dicarboxylate ( 46 ) with an excess of the C60-carboxylic acid 28 . The presence of two different fullerenes in the same molecule was reflected by its UV/VIS spectrum, which displayed the characteristic absorption bands of both the C70 and C60 mono-adducts, but at the same time indicated no electronic interaction between the different fullerene moieties. Cyclic voltammetry showed two reversible reduction steps for 49 , and comparison with the corresponding C70 and C60 mono-adducts 46 and 30 indicated that the three fullerenes in the composite fullerene compound behave as independent redox centers.  相似文献   

3.
Heptaleno[1,2-c]furan-6-carbaldehydes such as 8 or their thiocarbaldehyde or iminomethyl derivatives easily undergo thermal cyclization, followed by a [1,5]- H shift, to give the corresponding heptalenodifurans, thienoheptalenofurans, as well as furoheptalenopyrroles (cf. Schemes 2 and 3). Generation of the 6-acetyl derivative of 8 from the corresponding secondary alcohol 15 with 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (IBX) at 0° (cf. Scheme 4) leads directly to the formation of the cyclization product 16 which, upon standing at room temperature, undergoes the [1,5]-sigmatropic H-shift to the final difuran 17 . 1-Formylheptalene-4,5-dicarboxylates such as 9 can also be cyclized thermally, followed by the [1,5]-H shift, to the corresponding 8H-heptaleno[1,10-bc]furan-5,6-dicarboxylate 11 . On thiation with Lawesson′s reagent, 9 yields directly the corresponding heptalenothiophene 13 (cf. Scheme 3).  相似文献   

4.
Derivatives of fully cross-conjugated tetraethynylethene (3,4-diethynylhex-3-ene-1,5-diyne) 1 are versatile precursors to multinanometer-sized molecular rods with all-C-backbones. Oxidative polymerization (CuCl, N,N,N′,N′-tetramethylethylenthylenediamine (TMEDA), O2) of the trans-bis-deprotected trans-bis(triisopropylsilyl)-protected tetraethynylethene 2 yielded, after end-capping with phenylacetylene, the remarkably stable, soluble oligomers 3 – 7 with a persilylethynylated poly(triacetylene) (PTA) backbone [? (C?C? CR?CR? C?C)n? ] and a length of 19.4 ( 3 ), 26.8 ( 4 ), 34.3 ( 5 ), 41.8 ( 6 ), and 49.2 ( 7 ) Å (Scheme 1). These compounds underwent facile one-electron reductions with the number of reversible reduction steps being equal to the number of tetraethynylethene moieties in each molecular rod. Oxidative Eglinton-Glaser homo-coupling of tetraethynylethenes 8 – 10 with a single free ethynyl group provided the fully silyl-protected 3,4,9,10-tetraethynyl-substituted dodeca-3,9-diene-1,5,7,11-tetraynes 11 – 13 (Scheme 2) and, after alkyne deprotection, the novel hydrocarbon 14 , a C20H6 isomer, and its partially silyl-protected derivative 15 . Oxidative hetero-coupling between two different tetraethynylethene derivatives, one with a single and the other with two free terminal ethynyl groups, yielded the extended chromophores 16 – 21 composed of 3 or 4 tetraethynylethene moieties (Scheme 3). The linearly conjugated oligomers 16 and 17 with the PTA backbone are isomeric to 19 and 20 , respectively, which are members of the cross-conjugated expanded dendralenes, i.e., dendralenes with butadiynediyl fragments inserted between each pair of double bonds [? (C?C? C(?CR2)? C?C)n? ]. The electronic absorption spectra of these compounds were compared and analyzed in terms of the competition between linear and cross-conjugation in determining the extent of π-electron delocalization. Although steric factors on π-electron conjugation remain to be clarified, this analysis strongly suggests that cross-conjugation is not an efficient mechanism for π-electron delocalization. All extended acetylenic-olefinic chromophores considered in this study exhibited remarkably high stability and did not decompose when exposed to laboratory air and light for months. In agreement with this observation, electrochemical studies demonstrated that the compounds are difficult to oxidize with the oxidation potentials in THF (0.1M (Bu4N)PF6) being higher than 1.0 V (vs. the ferrocene/ferrocenium couple).  相似文献   

5.
The reaction of thiobenzophenone (= diphenylmethanethione; 8a ) or 9H-fluorene-9-thione ( 8b ) and methyl fumarate ( 9 ) in excess PhN3 at 80° yields a mixture of diastereoisomeric thiiranes 10 and 11 (Scheme 1). A mechanism involving the initial formation of 1-phenyl-4, 5-dihydro-1H-1, 2, 3-triazole-4, 5-dicarboxylate 12 by 1, 3-dipolar cycloaddition of PhN3 and 9 is proposed in Scheme 2. The diazo compound 13 , which is in equilibrium with 12 , undergoes a further 1, 3-dipolar cycloaddition with thioketones 8 to give 2, 5-dihydro-1, 3, 4-thiadiazoles 14 . Elimination of N2 yields the thiocarbonyl ylide 15 which cyclizes to the corresponding thiirane. Desulfurization of the thiiranes 10 and 11 with hexamethylphosphorous triamide leads to the olefinic compounds 16 (Scheme 3). The crystal structures of 10a , 11a , and 16b were determined.  相似文献   

6.
Rh(I)-Catalysed Rearrangements of 3,4-Diacyloxy-1,5-hexadiynes; Synthesis of (E)-4-Acyloxymethyliden-2-cyclopenten-1-ones The 3,4-diacyloxy-1,5-hexadiynes 3, 6 and 8 which were synthesized according to a known, slightly modified procedure react with [Rh(CO)2Cl]2 at 100° in chloroform with formation of the (E)-4-acyloxymethyliden-2-cyclopenten-1-ones 4, 7 and 9 (Schemes 2, 3 and 4), respectively. DL - and meso- 3 as well as trans- and cis- 8 , give the same (E)-isomers 4 and 9 , respectively. 3,4-Diacetoxy-3, 4-dimethyl-1, 6-diphenyl-1,5-hexadiyne ( 10 ) produces with the same catalyst 2,6-diacetoxy-3, 4-dimethyl-1,6-diphenylfulvene ( 11 ) (Scheme 5). A mechanism for the formation of the cyclopentenones is proposed in Scheme 6.  相似文献   

7.
Treatment of 6,7‐diethoxy‐3,4‐dihydroisoquinoline ( 8 ) and its 1‐methyl derivative 12 with hydrazonoyl halides 10 in the presence of Et3N in THF under reflux afforded the corresponding 5,6‐dihydro‐1,2,4‐triazolo[3,4‐a]isoquinolines 11 and 13 , respectively, in high yield (Schemes 2 and 3). The products are formed via regioselective 1,3‐dipolar cycloaddition of the intermediate nitrilimines 9 with the isoquinoline C=N bond. Reaction of 6,7‐diethoxy‐3,4‐dihydroisoquinoline‐1‐acetonitrile ( 4a ) with ethyl α‐cyanocinnamates 15 in the presence of piperidine in refluxing MeCN yielded benzo[a]quinolizin‐4‐ones 16 (Scheme 4). Under the same conditions, 12 and arylidene malononitriles 19 reacted to give benzo[a]quinolizin‐4‐imines 20 (Scheme 5). Instead of 15 and 19 , mixtures of an aromatic aldehyde, and ethyl cyanoacetate or malononitrile, respectively, can be used in a one‐pot reaction.  相似文献   

8.
Diphenyl phosphorazidate (DPPA) was used as the azide source in a one-pot synthesis of 2,2-disubstituted 3-amino-2H-azirines 1 (Scheme 1). The reaction with lithium enolates of amides of type 2 , bearing two substituents at C(2), proceeded smoothly in THF at 0°; keteniminium azides C and azidoenamines D are likely intermediates. Under analogous reaction conditions, DPPA and amides of type 3 with only one substituent at C(2) gave 2-diazoamides 5 in fair-to-good yield (Scheme 2). The corresponding 2-diazo derivatives 6–8 were formed in low yield by treatment of the lithium enolates of N,N-dimethyl-2-phenylacetamide, methyl 2-phenylacetate, and benzyl phenyl ketone, respectively, with DPPA. Thermolysis of 2-diazo-N-methyl-N-phenylcarboxamides 5a and 5b yielded 3-substituted 1,3-dihydro-N-methyl-2H-indol-2-ones 9a and 9b , respectively (Scheme 3). The diazo compounds 5–8 reacted with 1,3-thiazole-5 (4H)-thiones 10 and thiobenzophenone ( 13 ) to give 6-oxa-1,9-dithia-3-azaspiro[4.4]nona-2,7-dienes 11 (Scheme 4) and thiirane-2-carboxylic acid derivatives 14 (Scheme 5), respectively. In analogy to previously described reactions, a mechanism via 1,3-dipolar cycloaddition, leading to 2,5-dihydro-1,3,4-thiadiazoles, and elimination of N2 to give the ‘thiocarbonyl ylides’ of type H or K is proposed. These dipolar intermediates with a conjugated C?O group then undergo either a 1,5-dipolar electrocyclization to give spirohetrocycles 11 or a 1,3-dipolar electrocyclization to thiiranes 14 .  相似文献   

9.
(±)‐Desoxynoreseroline ( 3 ), the basic ring structure of the pharmacologically active alkaloid physostigmine ( 1 ), was synthesized starting from 3‐allyl‐1,3‐dimethyloxindole ( 9 ). The latter was prepared from the corresponding 2H‐azirin‐3‐amine 6 by a BF3‐catalyzed ring enlargement via an amidinium intermediate 7 (Scheme 1). An alternative synthesis of 9 was also carried out by the reaction of N‐methylaniline with 2‐bromopropanoyl bromide ( 12 ), followed by intramolecular Friedel–Crafts alkylation of the formed anilide 13 to give Julian's oxindole 11 . Further alkylation of 11 with allyl bromide in the presence of LDA gave 9 in an excellent yield (Scheme 3). Ozonolysis of 9 , followed by mild reduction with (EtO)3P, gave the aldehyde 14 , whose structure was chemically established by the transformation to the corresponding acetal 15 (Scheme 4). Condensation of 14 with hydroxylamine and hydrazine derivatives, respectively, gave the corresponding imine derivatives 16a – 16d as a mixture of syn‐ and anti‐isomers. Reduction of this mixture with LiAlH4 proceeded by loss of ROH or RNH2 to give racemic 3 (Scheme 5).  相似文献   

10.
The reactions of 1,4,5-trisubstituted imidazole 3-oxides 1a – k with cyclobutanethiones 5a , b in CHCl3 at room temperature give imidazole-2(3H)-thiones 9a – k in high yield. The second product formed in this reaction is 2,2,4,4-tetramethylcyclobutane-1,3-dione ( 6a ; Scheme 2). Similar reactions occur with 1 and adamantanethione ( 5c ) as thiocarbonyl compound, as well as with 1,2,4-triazole-4-oxide derivative 10 and 5a (Scheme 3). A reaction mechanism by a two-step formation of the formal cycloadduct of type 7 via zwitterion 16 is proposed in Scheme 5. Spontaneous decomposition of 7 yields the products of this novel sulfur-transfer reaction. The starting imidazole 3-oxides are conveniently prepared by heating a mixture of 1,3,5-trisubstituted hexahydro-1,3,5-triazines 3 and α-(hydroxyimino) ketones 2 in EtOH (cf. Scheme 1). As demonstrated in the case of 9d , a `one-pot' procedure allows the preparation of 9 without isolation of the imidazole 3-oxides 1 . The reaction of 1c with thioketene 12 leads to a mixture of four products (Scheme 4). The minor products, 9c and the ketene 15 , result from an analogous sulfur-transfer reaction (Path a in Scheme 5), whereas the parent imidazole 14 and thiiranone 13 are the products of an oxygen-transfer reaction (Path b in Scheme 5).  相似文献   

11.
4-Amino-1,5-dihydro-2H-pyrrol-2-ones from Boron Trifluoride Catalyzed Reactions of 3-Amino-2H-azirines with Carboxylic Acid Derivatives Reaction of 3-amino-2H-azirines 1 with ethyl 2-nitroacetate ( 6a ) in refluxing MeCN affords 4-amino-1,5-dihydro-2H-pyrrol-2-ones 7 and 3,6-diamino-2,5-dihydropyrazines 8 , the dimerization product of 1 (Scheme 2). Thus, 6a reacts with 1 as a CH-acidic compound by C? C bond formation via C-nucleophilic attack of deprotonated 6a onto the amidinium-C-atom of protonated 1 (Scheme 5). The scope of this reaction seems to be rather limited as 1 and 2-substituted 2-nitroacetates do not give any products besides the azirine dimer 8 (see Table 1). Sodium enolates of carboxylic esters and carboxamides 11 react with 1 under BF3 catalysis to give 4-amino-1,5-dihydro-2H-pyrrol-2-ones 12 in 50–80% yield (Scheme 3, Table 2). In an analogous reaction, 3-amino-2H-pyrrole 13 is formed from 1c and the Li-enolate of acetophenone (Scheme 4). A reaction mechanism for the ring enlargement of 1 involving BF3 catalysis is proposed in Scheme 6.  相似文献   

12.
A facile and efficient synthesis of 1,5‐benzodiazepines with an arylsulfonamido substituent at C(3) is described. 1,5‐Benzodiazepine, derived from the condensation of benzene‐1,2‐diamine and diketene, reacts with an arylsulfonyl isocyanate via an enamine intermediate to produce the title compounds of potential synthetic and pharmacological interest in good yields (Scheme 1). In addition, reaction of benzene‐1,2‐diamine and diketene in the presence of benzoyl isothiocyanate leads to N‐[2‐(3‐benzoylthioureido)aryl]‐3‐oxobutanamide derivatives (Scheme 2). This reaction proceeds via an imine intermediate and ring opening of diazepine. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

13.
1-Mesityl allene ( 1 ), 1-mesityl-3-methyl allene ( 2 ) and 1-mesityl-3,3-dimethyl allene ( 3 ) rearrange thermally at 150–190° in decane via [1,5s]sigmatropic H-shifts to yield the o-quinodimethanes 4 , which cyclise to give the 1,2-dihydronaphthalenes 5 and 6 and/or undergo [1,7 a]sigmatropic H-shifts to give 1-mesityl-(Z)-buta-1, 3-dienes (Z)- 7 and (Z)- 8 , respectively (Schemes 1,3,4 and 5) in almost quantitative yields. The activation parameters of these isomerisations are given in Table 1. 1-Mesityl-1-methyl allene ( 9 ) isomerises at 190° to give 4,5,7-trimethyl-1,2-dihydronaphthalene ( 17 ) in 50% yield (Scheme 6). 2′-Isopropylphenyl allene ( 10 ) in decane rearranges at 170° to 1-(Z)-propenyl-2-isopropenyl-benzene ((Z)- 19 , Scheme 7). Deuterium labelling experiments show that the rate determining step is an aromatic [1,5s]sigmatropic hydrogen shift from an sp3- to an sp-hybridised carbon atom. The primary kinetic isotopic effect (kH/kD) is 3.45, while the secondary βisotopic effect is 1.20 (Scheme 7 and Table 2).  相似文献   

14.
A linear and a convergent synthesis of uridine‐derived backbone‐base‐dedifferentiated (backbone including) oligonucleotide analogues were compared. The Sonogashira cross‐coupling of the alkyne 1 and the iodide 2 gave the dimer 4 that was C‐desilylated and again coupled with 2 to give the trimer 6 (Scheme 1). Repeating this linear sequence led to the pentamer 10 . Coupling yields were satisfactory up to formation of the trimer 6 , but decreased for the coupling to higher oligomers. Similarly, coupling of the alkynes 5, 7 , and 9 with the iodouridine 3 gave, in decreasing yields, the trimer 12 , tetramer 13 , and pentamer 14 , respectively. The dimeric iodouracil 20 was synthesized by coupling the alkyne 17 with the iodide 16 to the dimer 18 , followed by iodination at C(6/I) to 19 and O‐silylation (Scheme 2). The iodinated dimer 23 was prepared by iodinating and O‐silylating the known dimer 21 . Coupling of 20 and 23 with the dimer 5 , trimer 7 , and tetramer 9 gave the tetramers 8 and 13 , the pentamers 10 and 14 , and the hexamer 15 , respectively (Scheme 3). The oligomers up to the pentamer 14 were deprotected to provide the trimer 24 , tetramer 25 , and pentamer 26 (Scheme 4). There was no evidence for the heteropairing of the pentamer 26 and rA7 , nor for the pairing of rU5 and rA7, while a UV melting experiment showed the beginning of a sigmoid curve for the interaction of rU7 with rA7. Therefore, the pentamer 26 does not pair more strongly with rA7 than rU5.  相似文献   

15.
Reaction Products from 3-Dimethylamino-2,2-dimethyl-2H-azirine and Phthalohydrazide or Maleohydrazide 3-Dimethylamino-2, 2-dimethyl-2H-azirine (1) reacts in dimethylformamide at room temperature with the six-membered cyclic hydrazides 2, 3-dihydrophthalazin-1, 4-dione (2) and 1, 2-dihydropyridazin-3, 6-dione (15) to give the zwitterionic compounds 3 and 16 , respectively (Scheme 1 and 7). The mechanism of these reactions is outlined in Scheme 1 for compound 3 (cf. also Scheme 8). The first steps are thought to be similar to the known reactions of 1 with the NH-acidic compounds saccharin and phthalimide (cf. [1]). Instead of ring expansion to the nine-membered heterocycle i (X=CONH, Scheme 8), a proton transfer followed by the loss of water gives 3 (Scheme 1). The structure of the zwitterionic compounds 3 and 16 is deduced from spectral data and the reactions of these compounds (see Schemes 2, 3, 4, 6 and 7). Methylation of 3 yields the iodide 4 , which is hydrolysed easily to the 2-imidazolin-5-one derivative 5 (Scheme 2). Hydrolysis of 3 under basic conditions leads to the amide 6 , which undergoes cyclization to 7 at 220–230° (Scheme 3). The analogous cyclization has been realized under acidic conditions in the case of 17 (Scheme 7). Catalytic reduction of 3 yields the tertiary amine 14 (Scheme 6), whereas the reduction with sodium borohydride leads to a mixture of 14 and the 2-imidazoline derivative 13 . The alcohol 11 , corresponding to the amine 14 , is obtained by sodium borohydride reduction of the 2-imidazolin-5-one 7 or of the amide 6 (Scheme 3). This remarkably easy reaction of 7 shows the unusual electrophilicity of the lactamcarbonyl group in this compound. The reduction of 6 to 11 is understandable only by neighbouring group participation of N (2′) in the dihydrophthalazine residue.  相似文献   

16.
4-Alkoxy-1,3-oxazol-5(2H)-ones of type 4 and 7 were synthesized by two different methods: oxidation of the 4-(phenylthio)-1,3-oxazol-5(2H)-one 2a with m-chloroperbenzoic acid in the presence of an alcohol gave the corresponding 4-alkoxy derivatives 4 , presumably via nucleophilic substitution of an intermediate sulfoxide (Scheme 2). The second approach is the BF3-catalyzed condensation of imino-acetates of type 6 and ketones (Scheme 3). The yields of this more straightforward method were modest due to the competitive formation of 1,3,5-triazine tricarboxylate 8. At 155°, 1,3-oxazol-5(2H)-one 7b underwent decarboxylation leading to an alkoxy-substituted nitrile ylide which was trapped in a 1,3-dipolar cycloaddition by trifluoro-acetophenone to give the dihydro-oxazoles cis- and trans- 9 (Scheme 4). In the absence of a dipolarophile, 1,5-dipolar cyclization of the intermediate nitrile ylide yielded isoindole derivatives 10 (Schemes 4 and 5).  相似文献   

17.
The reaction of N‐phenylimidoyl isoselenocyanates 1 with 2‐amino‐1,3‐thiazoles 10 in acetone proceeded smoothly at room temperature to give 4H‐1,3‐thiazolo[3,2‐a] [1,3,5]triazine‐4‐selones 13 in fair yields (Scheme 2). Under the same conditions, 1 and 2‐amino‐3‐methylpyridine ( 11 ) underwent an addition reaction, followed by a spontaneous oxidation, to yield the 3H‐4λ4‐[1,2,4]selenadiazolo[1′,5′:1,5] [1,2,4]selenadiazolo[2,3‐a]pyridine 14 (Scheme 3). The structure of 14 was established by X‐ray crystallography (Fig. 1). Finally, the reaction of 1‐methyl‐1H‐imidazole ( 12 ) and 1 led to 3‐methyl‐1‐(N‐phenylbenzimidoyl)‐1H‐imidazolium selenocyanates 15 (Scheme 4). In all three cases, an initially formed selenourea derivative is proposed as an intermediate.  相似文献   

18.
The irradiation of the 3-phenyl-2H-azirines 1a–c in the presence of diethyl benzoylphosphonate ( 8 ) in cyclonexane solution, using a mercury high pressure lamp (pyrex filter), yields the diethyl (4, 5-diphenyl-3-oxazolin-5-yl)-phosphonates 9a–c (Scheme 3). In the case of 1b a mixture of two diastereomeric 3-oxazolines, resulting from a regiospecific but non-stereospecific cycloaddition of the benzonitrile-benzylide dipole 2b to the carbonyl group of the phosphonate 8 , was isolated. Benzonitrile-isopropylide ( 2a ), generated from 2,2-dimethyl-3-phenyl-2H-azirine ( 1a ), undergoes a cycloaddition reaction to the ester-carbonyl group of diethyl ethoxycarbonylphosphonate ( 15 ) with the same regiospecificity to give the 3-oxazoline derivative 16 (Scheme 5). The azirines 1a–c , on irradiation in benzene in the presence of diethyl vinylphosphonate ( 17 ) give non-regiospecifically the Δ1-pyrrolines 13a–c and 14a–c (Scheme 6).  相似文献   

19.
We describe a versatile novel approach for the synthesis of 2, 4, 6-trisubstituted pyrimidines on solid support. Thus, polymer-boun J thiouronium salt 2 reacted in high yield in a cyclocondensation reaction with the acetylenic ketones 3 to form, after tert-butyl-ester cleavage, the polymer-bound carboxylic acids 4 , which were cleaved by oxidation with 3-chloroperbenzoic acid and pyrrolidine to form the 2-pyrrolidinylpyrimidine-4-carboxylic acids 6a-c in high yields and purities without further purification (Scheme 1). Alternatively, acid 4a was subjected to an Ugi four-component condensation which gave the polymer-bound Ugi products 9a-e in good yields (Scheme 2). Multidirectional cleavage reaction of sulfone 8a with different nucleophiles resulted in the clean formation of pyrimidine-4-carboxamides 10–13 (Scheme 3). This strategy combines efficiently solid-phase chemistry with a multicomponent reaction and a multidirectional cleavage step to form highly diverse pyrimidines in a parallel array.  相似文献   

20.
1,5-Dipolar Electrocyclization of Acyl-Substituted ‘Thiocarbonyl-ylides’ to 1,3-Oxathioles The reaction of α-diazoketones 15a, b with 4,4-disubstituted 1,3-thiazole-5(4H)-thiones 6 (Scheme 3), adamantanethione ( 17 ), 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 19 ; Scheme 4), and thiobenzophenone ( 22 ; Scheme 5), respectively, at 50–90° gave the corresponding 1,3-oxathiole derivatives as the sole products in high yields. This reaction opens a convenient access to this type of five-membered heterocycles. The structures of three of the products, namely 16c, 16f , and 20b , were established by X-ray crystallography. The key-step of the proposed reaction mechanism is a 1,5-dipolar electrocyclization of an acyl-substituted ‘thiocarbonyl-ylide’ (cf. Scheme 6). The analogous reaction of 15a, b with 9H-xanthen-9-thione ( 24a ) and 9H-thioxanthen-9-thione ( 24b ) yielded α,β-unsaturated ketones of type 25 (Scheme 5). The structures of 25a and 25c were also established by X-ray crystallography. The formation of 25 proceeds via a 1,3-dipolar electrocyclization to a thiirane intermediate (Scheme 6) and desulfurization. From the reaction of 15a with 24b in THF at 50°, the intermediate 26 (Scheme 5) was isolated. In the crude mixtures of the reactions of 15a with 17 and 19 , a minor product containing a CHO group was observed by IR and NMR spectroscopy. In the case of 19 , this side product could be isolated and was characterized by X-ray crystallography to be 21 (Scheme 4). It was shown that 21 is formed – in relatively low yield – from 20a . Formally, the transformation is an oxidative cleavage of the C?C bond, but the reaction mechanism is still not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号