首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compounds [Hg2(μ—SePh)2(SePh)2(PPh3)2] ( I ) and [Hg3Br3(μ—SePh)3] · 2 DMSO ( II ) are formed by reactions of [Hg(SePh)2] with PPh3 in THF( I ) or with HgBr2 in DMSO ( II ) at room temperature. X—ray crystallography reveals that the cluster I consists of a distorted square built by each two Hg and Se atoms. The Hg atoms have almost tetrahedral co‐ordination environments formed by selenium atoms of two (μ‐SePh) ligands and Se and P atoms of terminal SePh and PPh3 ligands. The compound II is a six‐membered ring with alternating Hg and Se atoms in the chair conformation. Two DMSO molecules occupy positions below and above the [Hg3Se3] ring with the oxygen atoms directed to the centre of the ring.  相似文献   

2.
Synthesis, NMR Spectra and Structure of [(CH3)2Ga{μ‐P(H)Si(CH3)3}2Ga(CH3)2{μ‐P(Si(CH3)3)2}Ga(CH3)2] The title compound has been prepared in good yield by the reaction of [Me2GaOMe]3 (Me = CH3) with HP(SiMe3)2 in toluene (ratio 1 : 1,1) and purified by crystallization from pentane or toluene, respectively. This organogallium compound forms (Ga–P)3 ring skeletons with one Ga–P(SiMe3)2–Ga and two Ga–P(H)SiMe3–Ga bridges and crystallizes in the monoclinic space group C2/c. The known homologous Al‐compound is isotypic, both (MIII–P)3 heterocycles have twist‐conformations, the ligands of the monophosphane bridges have trans arrangements.  相似文献   

3.
4.
Vibrational Spectra and Force Constants of the Series OP(N(CH3)2)3 – OP(CH3)3 and SP(N(CH3)2)3 – SP(CH3)3 The vibrational spectra (IR and Raman) of the compounds of the title series are recorded and assigned to the normal vibrations. By a simplified force field the valence force constants are calculated and discussed. The results are compared with those of the NMR spectroscopy.  相似文献   

5.
Ligand exchange reactions of cis‐PtCl2(PPh3)2 and [NMe4]SCF3 in different ratios were studied. Depending on the stoichiometry reactions proceeded with formation of products expected for the chosen ratio, i. e. cis‐Pt(SCF3)Cl(PPh3)2, cis‐Pt(SCF3)2(PPh3)2, and [NMe4][Pt(SCF3)3(PPh3)]. Starting from cis‐PtCl2(MeCN)2 and [NMe4]SCF3 and adding PPh3 after substitution, product mixtures were dominated by the corresponding trans‐isomers. Results of the single crystal structure analyses of cis‐Pt(SCF3)2(PPh3)2 and trans‐Pt(SCF3)Cl(PPh3)2 are discussed.  相似文献   

6.
自从氮化硼陶瓷纤维用聚合物先驱体法[1]合成以后,硼氮六元环化合物越来越为人们所重视[2],文中在制备氮化硼纤维先驱体的过程中,合成了其中间产物,通过热缩合成环反应,合成了含有硼氮六员环的化合物,并采用色-质联用技术对其进行了表征。1 实验部分参照文献[3],改用液氮和丙酮为冷冻剂,控制温度在-50到-40℃,搅拌下向三氯化硼的正戊烷溶液中缓慢滴加三乙胺的正戊烷溶液,滴完后N2气氛下-50℃加丙酮冷凝回流2h,慢慢由-50℃升至室温,抽滤即得到白色产物Et3NBCl3(A)。将A溶于适量苯中[4,5],加入等物质的量的三乙胺,加热回流搅拌…  相似文献   

7.
Syntheses and Crystal Structures of new Amido- und Imidobridged Cobalt Clusters: [Li(THF)2]3[Co32-NHMes)3Cl6] (1), [Li(DME)3]2[Co184-NPh)33-NPh)12Cl3] (2), [Li(DME)3]2[Co64-NPh)(μ2-NPh)6(PPh2Et)2] (3), and [Li(THF)4][Co83-NPh)62-NPh)3(PPh3)2] (4) The reactions of cobalt(II)-chloride with the lithium-amides LiNHMes and Li2NPh leads to an amido-bridged multinuclear complex [Li(THF)2]3[Co32-NHMes)3Cl6] ( 1 ) as well as to the imido-bridged cobalt cluster [Li(DME)3]2[Co184-NPh)33-NPh)12Cl3] ( 2 ). In the presence of tertiary phosphines two imido-bridged cobalt clusters [Li(DME)3]2[Co64-NPh)(μ2-NPh)6(PPh2Et)2] ( 3 ) and [Li(THF)4][Co83-NPh)62-NPh)3(PPh3)2] ( 4 ) result. The structures of 1 – 4 were characterized by X-ray single crystal structure analysis.  相似文献   

8.
9.
The synthesis and single crystal X‐ray structure determination are reported for the 2,2′ : 6′,2″‐terpyridine (= tpy) adduct of bismuth(III) nitrate. The hydroxide‐bridged dimer [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy)(η2‐NO3)2] with nine‐coordinate geometry about Bi was the only isolable product from all crystallization attempts in varying ratios of Bi(NO3) : terpy.; [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy) · (η2‐NO3)2] is triclinic, P 1, a = 7.941(8), b = 10.732(9), c = 11.235(9) Å; α = 63.05(1), β = 85.01(1), γ = 79.26(1)°, Z = 1, dimer, R = 0.058 for N0 = 2319.  相似文献   

10.
Two new iron–oxo clusters, viz. di‐μ‐tri­fluoro­acetato‐μ‐oxo‐bis­[(2,2′‐bi­pyridine‐κ2N,N′)(tri­fluoro­acetato‐κO)­iron(III)], [Fe2O(CF3CO2)4(C10H8N2)2], and bis(2,2′‐bi­pyridine)­di‐μ3‐oxo‐hexa‐μ‐tri­fluoro­acetato‐bis­(tri­fluoro­acetato)­tetrairon(III) tri­fluoro­acetic acid solvate, [Fe4O2(CF3CO2)8(C10H8N2)2]·CF3CO2H, contain dinuclear and tetranuclear FeIII cores, respectively. The FeIII atoms are in distorted octahedral environments in both compounds and are linked by oxide and tri­fluoro­acetate ions. The tri­fluoro­acetate ions are either bridging (bidentate) or coordinated to the FeIII atoms via one O atom only. The fluorinated peripheries enhance the solubility of these compounds. Formal charges for all the Fe centers were assigned by summing valences of the chemical bonds to the FeIII atom.  相似文献   

11.
12.
13.
14.
Azido Complexes of Vanadium(IV) and Vanadium(V): (Ph4P)2[VOCl2(μ‐N3)]2 and (Ph4P)2[VOCl(μ‐N3)(N3)2]2 (Ph4P)2[VOCl2(μ‐N3)]2 ( 1 ) was prepared by reaction of (Ph4P)[VO2Cl2] with trimethylsilylazide in the molar ratio 1:2 in dichloromethane solution to give dark green, moisture sensitive, non‐explosive single crystals. The reaction is accompanied by the formation of the dark blue side‐product (Ph4P)2[VOCl(μ‐N3)(N3)2]2 ( 2a ), which can be obtained as the main product by application of a large excess of Me3SiN3. Dark blue needles of 2a crystallize spontaneously from the CH2Cl2 solution within one hour at 4 °C. After standing at 4 °C under its mother liquid within 24 hours a first‐order phase transition of 2a occurs forming dark blue prismatic single crystals of 2b . According to single crystal X‐ray structure determinations, 2a and 2b crystallize in the same type of space group , however, with different lattice dimensions. The vanadium(IV) complex 1 is characterized by X‐ray structure determination and by vibrational spectroscopy (IR, Raman) as well as by EPR spectroscopy, whereas 2b is characterized by IR spectroscopy. 1 : Space group P21/n, Z = 2, a = 1009.5(1), b = 1226.6(2), c = 1943.0(2) pm, β = 98.42(1)°, R1 = 0.0672. The complex anion forms centrosymmetric units with V2N2‐four‐membered rings with a V···V distance of 335.6(1) pm and coordination number five on the vanadium(IV) atoms. 2a : Space group , Z = 1, a = 1089.0(2), b = 1097.1(2), c = 1310.1(2) pm, α = 92.99(1)°, β = 106.12(2)°, γ = 117.05(2)°, V = 1309.8(4) Å3, dcalc. = 1.440 g·cm?3, R1 = 0.0384. The complex anion forms centrosymmetric units of symmetry Ci with V2N2 four‐membered rings and VN bond lengths of 200.4(3) and 234.4(2) pm, respectively. The non‐bonding V···V distance amounts to 356.2(1) pm. 2b : Space group , Z = 1, a = 1037.3(2), b = 1157.6(2), c = 1177.2(2) pm, α = 98.48(2)°, ° = 103.82(2)°, γ = 106.33(2)°, V = 1281.8(4) Å3, dcalc. = 1.471 g·cm?3, R1 = 0.0724. The structure of the complex anion is similar to the anion of 2a with VN bond lengths of the four‐membered V2N2 ring of 203.3(4) and 235.2(4) pm, respectively, and a non‐bonding V···V distance of 357.5(1) pm.  相似文献   

15.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

16.
17.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

19.
A hydrothermal reaction of iron acetylacetonate, phosphoric acid, HF, N, N′‐bis(3‐aminopropyl)ethylenediamine and water at 150 °C gave rise to a new iron phosphate, [H3N(CH2)3NH2(CH2)2NH2(CH2)3NH3][Fe3F6(HPO4)2(PO4)] · 3H2O ( I ). The structure consists of Fe(1)O4F2, Fe(2)O3F3 octahedral and P(1)O3(OH) and P(2)O4 tetrahedral building units connected through their vertices to form fragments of tancoite‐type units. The tancoite‐type units are linked through the phosphate tetrahedra forming an unusual iron phosphate with a hitherto unknown low‐dimensional structure with three‐iron center.Magnetic studies indicate a complex behavior at low temperature and the high‐temperature data (150 — 300 K) has a Curie‐Weiss behavior. The calculated room temperature magnetic moment is 6 μB per Fe atom, and the Neel temperature, TN = 46K. Crystal data: orthorhombic, space group = I212121 (no. 24), a = 9.9042(11), b = 12.8865(14), c = 19.783(2)Å, U = 2524.9(5), Z = 4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号