首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
The crystal structure of trans-pyH[MoBr4py2] has been determined: orthorhombic, Pnma (No. 62), a = 16.197(3), b = 13.995(3), c = 8.615(1) Å, Z = 4, Dc = 2.23, Do = 2.20(3) g/cm3, V = 1 953(1) Å3. R1, Rw = 0.057 and 0.053. Trans-[MoBr4py2]? anions with staggered conformation of pyridine rings are located on the mirror planes. Mo? Br, Mo? N(pyridine) distances are 2.593(1), 2.573(1), 2.227(8) and 2.213(7) Å. Cations are located on the symmetry centers. The cation in trans-pyH[MBr4py2] can be replaced. Trans-NH4[MBr4py2] · H2O, Cs[MBr4py2], LH[MBr4py2] (M = Mo, W; L = 4-methylpyridine, 4-pic; 2,2′-bipyridyl, bipy) were prepared. The compounds of molybdenum and tungsten with the same chemical composition are isostructural. All compounds react with pyridine and 4-methylpyridine. The products are trans-MBr3L3, and in the case of molybdenum, also trans-MoBr3py2(4-pic). Bromine oxidizes trans-MI[MBr4py2] to trans-MBr4py2.  相似文献   

2.
The reaction between (NH4)[MoBr5 · H2O] and pyridine in acetonitrile (CH3CN) at room temperature results in the mixture of cis- and trans-(pyH)[MoBr4py2] which can be separated on the basis of solubility. cis-M[MoBr4py2] · ? H2O (M = NH4+, Rb+, Cs+), cis-(bipyH)[MoBr4py2] (bipy = 2,2′-bipyridil) and cis-(PPh4)[MoBr4py2], were prepared from cis-(pyH)[MoBr4py2]. At the temperature of boiling acetonitrile irreversible cis to trans isomerisation takes place. Bromine oxydizes cis isomers at room temperature to trans-MoBr4py2. The compounds were characterised by chemical analysis, infrared, UV-VIS spectroscopy, conductivity measurements and powder diffraction. The crystal structure of cis-(NH4)[MoBr4py2] · ? H2O has been determined: rhombohedral, R3c, (No. 161), a = 15.809(3) Å, β = 112.79(2)°, Z = 6, DC = 2.29, DO = 2.27(3) g/cm3, V = 2 601(1) Å3, R1 = 0.046, Rw = 0.068. Average Mo? Br and Mo? N(pyridine) distances within the anion are 2.58(2) and 2.20(2) Å. cis-Rb[MoBr4py2] · ? H2O and cis-Cs[MoBr4py2] · ? H2O are isostructural with cis-(NH4)[MoBr4py2] · ? H2O.  相似文献   

3.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of trans-(PNP)[TcCl4(Py)2] and trans-(PNP)[TcBr4(Py)2] By reaction of (PNP)2[TcX6] with pyridine in the presence of [BH4]? (PNP)[TcX4(Py)2], X = Cl, Br, are formed. X-ray structure determinations on single crystals of these isotypic TcIII complexes (monoclinic, space group P21/n, Z = 2, for X = Cl: a = 13.676(4), b = 9.102(3), c = 17.144(2) Å, β = 91.159(1)°; for X = Br: a = 13.972(2), b = 9.146(3), c = 17.285(4) Å, β = 90.789(2)°) result in the averaged bond distances Tc? Cl: 2.386, Tc? Br: 2.519, Tc? N: 2.132(3) (X = Cl) and 2.143(4) Å (X = Br). The two pyridine rings are coplanar and vertical to the X? Tc? X-axes, forming angles of 42.28° (X = Cl) and 43.11° (X = Br). Using the molecular parameters of the X-ray structure determination and assuming D2h point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis based on a modified valence force field. Good agreement between observed and calculated frequencies is obtained with the valence force constants fd(TcCl) = 1.45, fd(TcBr) = 1.035, fd(TcN) = 1.37 (X = Cl) and 1.45 mdyn/ Å (X = Br), respectively.  相似文献   

4.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

5.
The reaction of MoBr3 and pyridine at room temperature provided single crystals of mer‐[MoX3Py3]. mer‐[MoBr3Py3] crystallizes in P21/n monoclinic space group with cell dimensions a = 9.2297(5) Å, b = 12.911(8) Å, c = 15.7022(9) Å and β = 90.479(3)°. There are four formula units in a unit cell. Mo–N distances are in the range 2.196(8)–2.214(8) Å and Mo–Br distances are 2.573(1) Å and 2.574(1) Å. Fundamental vibrational frequencies of pyridine molecules are strongly affected upon coordination in all three coordination compounds: mer‐[MoBr3Py3], mer‐[MoI3Py3] and trans,trans‐[MoBr2Py4][MoBr4Py2].  相似文献   

6.
The reactions of Te2Br with MoOBr3, TeCl4 with MoNCl2/MoOCl3, and Te with WBr5/WOBr3 yield black, needle-like crystals of [Te15X4][MOX4]2 (M = Mo, W; X = Cl, Br). The crystal structure determinations [Te15Br4][MoOBr4]2: monoclinic, Z = 1, C2/m, a = 1595.9(4) pm, b = 403.6(1) pm, c = 1600.4(4) pm, β = 112.02(2)°; [Te15Cl4][MoOCl4]2: C2/m, a = 1535.3(5) pm, b = 402.8(2) pm, c = 1569.6(5) pm, β = 112.02(2)°; [Te15Br4][WOBr4]2: C2, a = 1592.4(4) pm, b = 397.5(1) pm, c = 1593.4(5) pm, β = 111.76(2)° show that all three compounds are isotypic and consist of one-dimensional ([Te15X4]2+)n and ([MOX4]?)n strands. The structures of the cationic strands are closely related to the tellurium subhalides Te2X (X = Br, I). One of the two rows of halogen atoms that bridges the band of condensed Te6 rings is stripped off, and additionally one Te position has only 75% occupancy which leads to the formula ([Te15X4]2+)n (X = Cl, Br) for the cation. The anionic substructures consist of tetrahalogenooxometalate ions [MOX4]? that are linked by linear oxygen bridges to polymeric strands. The compounds are paramagnetic with one unpaired electron per metal atom indicating oxidation state Mv, and are weak semiconductors.  相似文献   

7.
Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Decaborates(2–), [(C5H5N)2CH2][2-XB10H9]; X = Cl, Br, I [B10H10]2? reacts with chlorine, bromine and iodine or with N-halogenosuccinimide, yielding the monohalogenodecaborates [2-XB10H9]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of the isotypic chloro and bromo compounds [(C5H5N)2CH2][2-XB10H9] (monoclinic, space group C2/c, Z = 8; for X ? Cl: a = 33.174(5), b = 7.2809(4), c = 16.2232(7) Å, β = 113.307(7)°; for X = Br: a = 33.525(11), b = 7.281(2), c = 16.297(4) Å, β = 113.62(2)°) and of the iodo compound [(C5H5N)2CH2][2-IB10H9] (monoclinic, space group P21, Z = 2, a = 7.143(3), b = 13.568(4), c = 9.479(7) Å, β = 97.57(5)°) show columns of substituted boron clusters [2-XB10H9]2?, X = Cl, Br, I and bent dications [(C5H5N)2CH2]2+ along the shortest axis wich are assembled to alternating layers in the crystal lattice.  相似文献   

8.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

9.
Preparation and Characterization of [Pt(mal)2]2? and trans-[Pt(mal)2X2]2? (X = Cl, Br, I, SCN) By twofold treatment of K2[PtCl4] with potassium hydrogen malonate in a queous solution the yellow K2[Pt(mal)2] · H2O is obtained. After extraction with tetrabutylammonium ions into dichloromethane by oxidative addition at ?90°C the PtIV complexes [Pt(mal)2X2]2?, X = Cl, Br, I, SCN, are formed. The SCN ligands are coordinated to Pt via S. The IR and Raman spectra are discussed and assigned.  相似文献   

10.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [PtX2ox]2−, X = Cl, Br By treatment of [PtX4]2— (X = Cl, Br) with C2O42— (ox2—) in water [PtCl2ox]2— and [PtBr2ox]2— are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of [(C5H5N)2CH2][PtCl2ox]·2H2O ( 1 ) (orthorhombic, space group Pbca, a = 18.451(1), b = 18.256(1), c = 19.913(1)Å, Z = 16) and [(C5H5N)2CH2][PtBr2ox] ( 2 ) (monoclinic, space group P21/c, a = 7.249(1), b = 10.180(1), c = 21.376(1)Å, β = 93.415(9)°, Z = 4) reveal nearly planar complex anions with C2v point symmetry. The bond lengths are Pt‐Cl = 2.286, Pt‐Br = 2.405 und Pt‐O = 2.016 ( 1 ) und 2.030Å ( 2 ). In the vibrational spectra the PtX stretching vibrations are observed at 335 and 336 ( 1 ) and 219 and 231 cm—1 ( 2 ). The PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 350 — 800 cm—1. Using the molecular parameters of the X‐Ray determinations the IR and Raman spectra of the (n‐Bu4N) salts are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.97, fd(PtBr) = 1.78 and fd(PtO) = 2.48 ( 1 ) and 2.38 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 3603.9 ( 1 ) and 3318.1 ppm ( 2 ).  相似文献   

11.
A method for the preparation of new solvated clusters of the composition [M6Br12(H2O)6][HgBr2X2] · 12H2O (M?Nb, Ta; X?Cl, Br, I) is given. The cubic crystals of [Nb6Br12(H2O)6][HgBr4] · 12H2O 1 and [Ta6Br12(H2O)6][HgBr4] · 12H2O 2 were characterized by the X-ray structure analysis: 1 : cubic, space group Fd3 m, a = 21.0072(6) Å, Z = 8, R = 0.051 (Rw = 0.066); 2 : cubic, space group Fd3 m, a = 20.9698(1) Å, Z = 8, R = 0.038 (Rw = 0.050). 1 and 2 contain octahedral cluster cation [M6Br12(H2O)6]2+ and tetrahedrally arranged [HgBr4]2? anion. The M? M bond distances are 2.949(1) Å for 1 and 2.9000(8) Å for 2 . The Hg? Br bond distances in [HgBr4]2? anion are 2.614(2) Å in 1 and 2.622(2) Å in 2 . The crystal packing patterns of the isostructural clusters 1 and 2 involve the three-dimensional hydrogen bond network; the crystalline water molecules act as donors of hydrogen to the bromine atoms of the cluster and [HgBr4]2? units, whereas the coordinated water molecules form hydrogen bonds to the crystalline water molecules. [Nb6Br12(H2O)6][HgBr4] · 12H2O is diamagnetic and semiconducting with the activation energy, Ea = 0.20 eV.  相似文献   

12.
Halomercurates: Syntheses and Crystal Structures of [Cu(en)2][Hg2Cl6], [Cu(en)2][Hg2Br6], and [Cu(en)2][HgBr4] Crystals of [Cu(en)2][Hg2Cl6] ( 1 ) have been obtained by layering a solution of Hg(NO3)2 and NaCl with a solution of [Cu(en)2]SO4. An analogous procedure, using NaBr instead of NaCl, gave crystals of [Cu(en)2][HgBr4] ( 3 ). Crystals of [Cu(en)2][Hg2Br6] ( 2 ) were obtained by gel crystallization using the same starting materials as for 3 . The complexes show very low solubility. The dinuclear anions of 1 consist of two nearly planar HgCl3 units related by a center of symmetry. In 2 infinite anionic chains are present, made up of parallel HgBr3 units. These units are packed in such a way as to produce a trigonal bipyramidal configuration around the Hg atoms. 3 contains mononuclear deformed tetrahedral [HgBr4]2– anions. In all three complexes the packing of the ions is such that halogen atoms of halomercurate anions complete a tetragonal bipyramidal coordination at Cu. The resulting Cu–Halogen distances are 2.924 Å for 1 , 3.036 Å for 2 and 3.085 and 3.119 Å for 3 . 1 : Space group P 1, Z = 1, lattice constants at 20 °C: a = 7.000(2), b = 7.526(2), c = 8.239(2) Å; α = 88.39(2), β = 86.06(2), γ = 86.10(3)°; R1 = 0.040. 2 : Space group P21/c, Z = 2, lattice constants at –50 °C: a = 7.185(1), b = 16.338(2), c = 7.814(1) Å; β = 94.88(2)°; R1 = 0.033. 3 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 8.055(3), b = 13.101(3), c = 13.814(3) Å; β = 91.24(3)°; R1 = 0.092.  相似文献   

13.
Pb2PdX6 (X = Cl, Br) – Compounds with Elongated [PdX6] Octahedra In contradiction to published data new compounds in the systems PbX2—PdX2 (X = Cl, Br) with the formula Pb2PdCl6 (I) and Pb2PdBr6 (II) were found. These were synthesized by thermal treatment of the corresponding mixtures of PbX2 and PdX2 (X = Cl, Br). X-ray single crystal structure analysis shows isotypism of I and II, monoclinic, P21/c (No. 14), Z = 2, I: a = 9.037(2) Å, b = 6.224(1) Å, c = 8.162(1) Å, β = 90.31(7)β, II: a = 9.512(7) Å, b = 6.584(8) Å, c = 8.383(3) Å, β = 90.07(5)º. Strongly elongated PdX6 octahedra are found in the crystal structure. Additional characterisation of the compounds was done by DTA, IR/RAMAN spectra and 207Pb MAS NMR investigations. Remarcable low field shifts were found for 207Pb.  相似文献   

14.
Platinum(IV) complexes of the tetramine type [PtEnPy2X2]X2 · H2O (X = Cl, Br) have been found to lose a coordinated pyridine molecule at 125–135°C, thereby transforming into triamines [PtEnPyX3]X. The complex [PtEnPyCl3]NO3 has been isolated. Dissolution of the product of [PtEnPy2Cl2]Cl2 chlorination in HCl results in complete destruction of the five-membered chelate ring. The complex [Pt(NH3)2Py2Cl2](NO3)2 has been isolated. A number of compounds have been studied by X-ray diffraction: [PtEnPy2Cl2]Cl2 · 2H2O (I) (monoclinic, space group P21/c, a = 15.418(2) Å, b = 9.203(1) Å, c = 13.762(3) Å, β = 104.18(2)°, Z = 4, R hkl = 0.25), [PtEnPyCl3]NO3 (II) (monoclinic, space group P21/c, a = 8.194(1) Å, b = 8.846(1) Å, c = 19.855(2) Å, β = 97.10(1)°, Z = 4, R hkl = 0.048), and [Pt(NH3)2Py2Cl2](NO3)2 (III) (orthorhombic, space group Pbca, a = 12.316(2) Å, b = 13.250(3) Å, c = 21.868(4) Å, Z = 8, R hkl = 0.027). The reaction of [PtEnPyBr3]Br with bromine gives the polybromide [PtEnPyBr3]Br · Br2 · 0.5 H2O. The chlorination of [PtEnPyCl3]Cl gives the chloramine complex [Pt(NH2-CH2-NH(Cl)PyCl3]Cl · H2O.  相似文献   

15.
Magnesium Phthalocyanines: Synthesis and Properties of Halophthalocyaninatomagnesate, [Mg(X)Pc2?]? (X = F, Cl, Br); Crystal Structure of Bis(triphenylphosphine)iminiumchloro-(phthalocyaninato)magnesate Acetone Solvate Magnesium phthalocyanine reacts with excess tetra(n-butyl)ammonium- or bis(triphenylphosphine)iminiumhalide ((nBu4N)X or (PNP)X; X = F, Cl, Br) yielding halophthalocyaninatomagnesate ([Mg(X)Pc2?]?; X = F, Cl, Br), which crystallizes in part as a scarcely soluble (nBu4N) or (PNP) complex-salt. Single-crystal X-ray diffraction analysis of b(PNP)[Mg(Cl)Pc2?] · CH3COCH3 reveals that the Mg atom has a tetragonal pyramidal coordination geometry with the Mg atom displaced out of the center (Ct) of the inner nitrogen atoms (Niso) of the nonplanar Pc ligand toward the Cl atom (d(Mg? Ct) = 0.572(3) Å; d(Mg? Cl) = 2.367(2) Å). The average Mg? Niso distance is 2.058 Å. Pairs of partially overlapping anions are present. The cation adopts a bent conformation (b(PNP)+: d(P1? N(K)) = 1.568(3) Å; d(P2? N(K)) = 1.587(3) Å; ?(P1? N(K)? P2) = 141.3(2)°). Electrochemical and spectroscopic properties are discussed.  相似文献   

16.
Preparation and Vibrational Spectra of trans-[Pt(acac)2X2] (X ? Cl, Br, I, SCN, SeCN, N3) By electrolytical oxidation of [Pt(acac)2] in presence of chloride or bromide, dissolved in dichlormethane, trans-[Pt(acac)2X2], X ? Cl, Br, are formed. On treatment of trans-[Pt(acac)2I2] with silver pseudohalides trans-[Pt(acac)2X2], X ? SCN, SeCN, N3, are obtained. Beside the nearly persistent bands of coordinated acetylacetonate in the Raman spectra the intensive and sharp symmetric, in the IR spectra the corresponding antisymmetric stretching vibration of the X? Pt? X axis is observed. The observance of the rule of mutual exclusion proves the complexes to belong to point group D2h. From the resonance Raman spectrum of trans-[Pt(acac)2I2] for vs (Pt? I), Ag, the harmonic frequency ω1 = 142.45 cm?1 and the inharmonicity constant x11 = 0.48 cm?1 is calculated. In the Raman spectrum of trans-[Pt(acac)2Cl2] vs (Pt? Cl) is splitted by the isotops 35Cl/37Cl into the triplet 340, 335, 330 cm?1 giving the force constant fPtCl = 2.01 N/cm.  相似文献   

17.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

18.
The magnetic and spectroscopic (UV, visible-IR and electron paramagnetic resonance spectra) properties of the molecular complexes [Co(AGlH)2py2][Cr(NH3)2(NCS)4] and [Co(AGlH)2py2][Co(NH3)2(NO2)4] (where AGlH2 is diaminoglyoxime) have been examined in solid state. The molecular structure of the complexes and the nature of the interaction in the crystals has been considered.  相似文献   

19.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

20.
Pyridine Adducts of the Gold Halides. 1. Synthesis and Structure of [Hpy][AuCl4], AuC13 · py, [AuCl2(py)2]Cl · H2O, and [AuCl2(py)2] [AuCl2] HAuCl4 reacts with pyridine in aqueous solution to form sparingly soluble [Hpy] [AuCl4]. This goes into solution as [AuCl2(py)2]+ on adding an excess of pyridine. [Hpy][AuCl4] decomposes above 195°C to HCl and AuCl3 · py, which can also be obtained from NaAuCl4 and pyridine. AuCl2 · py is formed by the reaction of AuCl2 · S(CH2C6H4)2 with pyridine in CHCl3. According to the vibrational spectrum the complex is built up of trans[AuCl2(py)2]+ cations and [AuCl2]? anions. The IR spectra of [Hpy][AuCl4], AuCl3 · py, and [AuCl2(py)2]Cl · H2O are discussed and assigned with respect to the crystal structures. [Hpy][AuCl4] crystallizes monoclinic in the space group C2/m. In its structure alternating layers of [Hpy]+ cations and [AuCl4]? anions are observed. The monoclinic AuCl3 · py (space group C2/c) consists of molecular complexes, wherein the gold atom is surrounded by three Cl atoms and one pyridine molecule in a square planar arrangement. The coordination is completed to an elongated octahedron by two more distant Cl atoms of neighbouring complexes. [AuCl2(py)2]Cl · H2O crystallizes in the monoclinic space group P21/n. It forms planar trans[AuCl2(py)2]+ cations, weakly coordinated with an additional Cl? ion and one H2O molecule. The Au? Cl bond lengths in the complexes under investigation are in the range of 227 to 229 pm, the Au? N distances are between 197 and 199 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号