首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of facilitated proton transfer by polyether 18-crown-6 across the water-1,2-dichloroethane interface has been investigated by cyclic voltammetry and ac impedance. It was found that rate apparent constant is quite similar for the several concentrations of 18-crown-6 used in the experiments, the rate constant values (k s ) were in the range: 0.028, 0.031, 0.027, and 0. 03 cm/s for 0.1, 0.15, 0.2, and 0.25 mM of 18-crown-6.A formal transfer potential of 0 wi 0= 0.01 V was found for the facilitated proton transfer by 18-crown-6 at the water-1,2-dichloroethane interface; this value remained constant in the range of concentration considered in this work. According to the kinetic results, an interfacial reaction between the proton and the polyether 18-crown-6 is discussed in which the polyether does not transfer into the aqueous phase, in the time scale of the experiments. As a consequence, it can be concluded that the solvation and desolvation of ligand and proton play an important role in the rate-determining step.From Elektrokhimiya, Vol. 41, No. 2, 2005, pp. 206–212.Original English Text Copyright © 2005 by Velázquez-Manzanares, Amador-Hernández.This article was submitted by the authors in English.Part of this work was presented at XXV Congreso Latinoamericano de Qu#X00ED;mica in Cancun, Quintana Roo, Mexico, 2002.This revised version was published online in April 2005 with corrections to the article note and article title and cover date.  相似文献   

2.
A summary is presented of ESR results obtained in γ-irradiated disordered CCl3F/alkane systems at cryogenic temperatures, with respect to proton-donor site selectivity in the proton transfer from alkane radical cations to alkane molecules. The nature of the alkyl radicals formed by proton transfer is indicative for the site of proton donation and is derived unambiguously from ESR results by comparison with powder spectra of authentic isomeric alkyl radicals, obtained by γ-irradiation of various chloro and bromoalkanes in perdeuterated cis-decalin. The experiments can be divided into two main classes. (i) Experiments on n-alkane radical cations in the extended all-trans conformation, i.e. ESR results on the system CCl3F/heptane. The ESR spectrum of γ-irradiated CCl3F/heptane consists of a triplet due to heptane radical cations in the extended all-trans conformation. In this conformation, the unpaired electron is delocalized over the carbon-carbon σ-bonds as well as the two chain-end carbon-hydrogen bonds that are in the plane of the C---C skeleton. Superimposed on the ESR triplet is a low-intensity spectrum due to heptyl radicals, which increases drastically with increasing heptane concentration. The formation of these heptyl radicals can be attributed unambiguously to proton transfer from heptane radical cations to heptane molecules, taking place in small heptane clusters to which positive-hole transfer still occurs efficiently. At the onset of proton transfer with increasing heptane concentration only primary heptyl radicals are present, clearly showing that the proton transfer takes place selectively from a chain-end position, in accordance with the electronic structure of the reacting radical cations. At higher heptane concentration secondary heptyl radicals also appear as a result of intermolecular radical-site transfer, i.e. the nature of the heptyl radicals becomes governed by their thermodynamic stability. (ii) Experiments on n-alkane radical cations in the gauche-at-C2 conformation, i.e. ESR results on the system CCl3F/octane. The ESR spectrum of γ-irradiated CCl3F/octane indicates that octane radical cations are largely in the gauche-at-C2 conformation in this matrix, with large unpaired-electron (and positive-hole) density on one planar chain-end C---H bond and one planar penultimate C---H bond at the other side of the radical cation. Careful investigation of ESR spectra with increasing octane concentration clearly reveals that in this case secondary octyl radicals are present from the very onset of proton transfer, in accordance with the electronic structure of the reacting radical cations. The results clearly point to proton-donor site selectivity in the proton transfer from alkane radical cations to alkane molecules and to a strict dependence of the site of proton donation on the electronic structure and conformation of the reacting radical cations.  相似文献   

3.
The proton transfer resistance of membrane/solution interface is investigated in this paper by employing H2SO4 aqueous solution with different concentration. Two commercial cation exchange membranes, Nafion1135 and PE01 membranes with different ion exchange capacity were selected as test membranes; Proton transfer resistance measurements were made by A.C impedance techniques. The proton transfer resistance of membrane/solution interface increases quickly from 0.059 to 2.22 Ω with the decrease of H2SO4 concentration from 2.0 to 0.05 mol/L. The ion exchange capacity of the membrane, or more exactly, the surface charge of the membrane has obviously effect on the membrane/solution resistance due to the formation of electrical double layer (EDL). The effect of electrolyte concentration on membrane/solution interface resistance can be explained by the electrical interactions between ions and charged groups of the membrane: high concentration of ions in the medium can compress the EDL and reduce the electrical interactions between ions and charged groups of the membrane.  相似文献   

4.
The dynamics and mechanisms of proton dissociation and transfer in hydrated phosphoric acid (H3PO4) clusters under excess proton conditions were studied based on the concept of presolvation using the H3PO4–H3O+nH2O complexes (n = 1–3) as the model systems and ab initio calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the RIMP2/TZVP level as model calculations. The static results showed that the smallest, most stable intermediate complex for proton dissociation (n = 1) is formed in a low local‐dielectric constant environment (e.g., ε = 1), whereas proton transfer from the first to the second hydration shell is driven by fluctuations in the number of water molecules in a high local‐dielectric constant environment (e.g., ε = 78) through the Zundel complex in a linear H‐bond chain (n = 3). The two‐dimensional potential energy surfaces (2D‐PES) of the intermediate complex (n = 1) suggested three characteristic vibrational and 1H NMR frequencies associated with a proton moving on the oscillatory shuttling and structural diffusion paths, which can be used to monitor the dynamics of proton dissociation in the H‐bond clusters. The BOMD simulations over the temperature range of 298–430 K validated the proposed proton dissociation and transfer mechanisms by showing that good agreement between the theoretical and experimental data can be achieved with the proposed rate‐determining processes. The theoretical results suggest the roles played by the polar solvent and iterate that insights into the dynamics and mechanisms of proton transfer in the protonated H‐bond clusters can be obtained from intermediate complexes provided that an appropriate presolvation model is selected and that all of the important rate‐determining processes are included in the model calculations. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
We investigated the photoelectrochemical characteristics and photo-stability of Cu2O layered on a copper plate using a hydrophobic ionic liquid. Our findings revealed that Cu2O is stable under white light irradiation, provided water is removed from the electrolyte. Methyl viologen derivative, a well-established electron acceptor, was introduced to the ionic liquid electrolyte, allowing the photo-induced electron transfer reaction at the Cu2O/electrolyte interface to be characterized. The methyl viologen derivative exhibited two distinct redox reactions at −0.56 V and −0.98 V vs. Ag/AgCl, clearly indicating that no dimer formation or co-proportionation reaction occurred. The excessive photocurrents being continuously generated resulted from a viable photo-induced electron transfer reaction from the Cu2O to the acceptor. However, in contrast, the reduction of the Cu2O by water in the aqueous solution causes this electron transfer to be inhibited. We further demonstrate that these findings are vital to understanding the role of the Cu2O and its photoelectrochemical applications.  相似文献   

6.
The 1H NMR spectra of 1,1-dinitroethane/n-dibutylamine solutions in CCl4 have been investigated. It is shown that two types of complexes, the CH … N hydrogen bond complex and the ion pair are present in the solution simultaneously, with slow exchange through proton transfer between them. The exchange rates, activation energy and enthalpy of proton transfer are determined. It can be concluded that the act of proton transfer from carbon to nitrogen and back is kinetically determined.  相似文献   

7.
Scanning electrochemical microscopy (SECM) was used to monitor in situ hydrogen peroxide (H2O2) produced at a polarized water/1,2-dichloroethane (DCE) interface. The water/DCE interface was formed between a DCE droplet containing decamethylferrocene (DMFc) supported on a solid electrode and an acidic aqueous solution. H2O2 was generated by reducing oxygen with DMFc at the water/DCE interface, and was detected with a SECM tip positioned in the vicinity of the interface using a substrate generation/tip collection mode. This work shows unambiguously how the H2O2 generation depends on the polarization of the liquid/liquid interface, and how proton-coupled electron transfer reactions can be controlled at liquid/liquid interfaces.  相似文献   

8.
Green Fluorescent Protein (GFP) is known to undergo excited-state proton transfer (ESPT). Formation of a short H-bond favors ultrafast ESPT in GFP-like proteins, such as the GFP S65T/H148D mutant, but the detailed mechanism and its quantum nature remain to be resolved. Here we study in vacuo, light-induced proton transfer from the GFP chromophore in hydrogen-bonded complexes with two anionic proton acceptors, I and deprotonated trichloroacetic acid (TCA). We address the role of the strong H-bond and the quantum mechanical proton-density distribution in the excited state, which determines the proton-transfer probability. Our study shows that chemical modifications to the molecular network drastically change the proton-transfer probability and it can become strongly wavelength dependent. The proton-transfer branching ratio is found to be 60 % for the TCA complex and 10 % for the iodide complex, being highly dependent on the photon energy in the latter case. Using high-level ab initio calculations, we show that light-induced proton transfer takes place in S1, revealing intrinsic photoacid properties of the isolated GFP chromophore in strongly bound H-bonded complexes. ESPT is found to be very sensitive to the topography of the highly anharmonic potential in S1, depending on the quantum-density distribution upon vibrational excitation. We also show that the S1 potential-energy surface, and hence excited-state proton transfer, can be controlled by altering the chromophore microenvironment.  相似文献   

9.
Sildenafil (ViagraTM) was examined for its ionization and lipophilicity by two‐phase titration and electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) in the 1,2‐dichloroethane/H2O system. The dissociation constants (basic pKa=6.78, acidic pKa=9.12) and partition coefficients of the various species, together with the effects of electrical potential, were used to construct an ionic partition diagram (pH‐potential representation). This allowed to interpret the transfer mechanisms of sildenafil at liquid/liquid interfaces, suggesting in particular that an intramolecular H‐bond influences the lipophilicity of the neutral and cationic species. Conformational calculations confirmed this hypothesis.  相似文献   

10.
Blowing bubbles : Hydrogen evolution by proton reduction with [(C5Me5)2Fe] occurs at a soft interface between water and 1,2‐dichloroethane (DCE). The reaction proceeds by proton transfer assisted by [(C5Me5)2Fe] across the water–DCE interface with subsequent proton reduction in DCE. The interface essentially acts as a proton pump, allowing hydrogen evolution by directly using the aqueous proton.

  相似文献   


11.
12.
We estimated the energy barriers of proton transfers in the systems of (CF3SO3/H/SO3CF3) and (CF3SO3/H/H2O/SO3CF3) as models of a water-swollen Nafion membrane by an ab initio density functional quantum calculation method with consideration of the hydration effect. As a result, the proton transfer between the SO sites, which is accompanied by one water molecule, was found to be one of the proton-transfer mechanisms in the water-swollen Nafion membrane; that is, the surface diffusion mechanism was found to be important for the proton transfer in that membrane. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1905–1914, 2004  相似文献   

13.
At one extreme of the proton‐transfer spectrum in cocrystals, proton transfer is absent, whilst at the opposite extreme, in salts, the proton‐transfer process is complete. However, for acid–base pairs with a small ΔpKa (pKa of base ? pKa of acid), prediction of the extent of proton transfer is not possible as there is a continuum between the salt and cocrystal ends. In this context, we attempt to illustrate that in these systems, in addition to ΔpKa, the crystalline environment could change the extent of proton transfer. To this end, two compounds of salicylic acid (SaH) and adenine (Ad) have been prepared. Despite the same small ΔpKa value (≈1.2), different ionization states are found. Both crystals, namely adeninium salicylate monohydrate, C5H6N5+·C7H5O3?·H2O, I , and adeninium salicylate–adenine–salicylic acid–water (1/2/1/2), C5H6N5+·C7H5O3?·2C5H5N5·C7H6O3·2H2O, II , have been characterized by single‐crystal X‐ray diffraction, IR spectroscopy and elemental analysis (C, H and N) techniques. In addition, the intermolecular hydrogen‐bonding interactions of compounds I and II have been investigated and quantified in detail on the basis of Hirshfeld surface analysis and fingerprint plots. Throughout the study, we use crystal engineering, which is based on modifications of the intermolecular interactions, thus offering a more comprehensive screening of the salt–cocrystal continuum in comparison with pure pKa analysis.  相似文献   

14.
A proof-of-concept study on a liquid/liquid (L/L) two-phase electrolyte interface is reported by using the polarity difference of solvent for the protection of Li-metal anode with long-term operation over 2000 h. The L/L electrolyte interface constructed by non-polar fluorosilicane (PFTOS) and conventionally polar dimethyl sulfoxide solvents can block direct contact between conventional electrolyte and Li anode, and consequently their side reactions can be significantly eliminated. Moreover, the homogeneous Li-ion flow and Li-mass deposition can be realized by the formation of a thin and uniform solid-electrolyte interphase (SEI) composed of LiF, LixC, LixSiOy between PFTOS and Li anode, as well as the super-wettability state of PFTOS to Li anode, resulting in the suppression of Li dendrite formation. The cycling stability in a lithium–oxygen battery as a model is improved 4 times with the L/L electrolyte interface.  相似文献   

15.
Most recently, melamine has raised international concern for its catastrophic health effects stemming from tainted infant formula. So far there is limited information concerning the pharmacokinetics of melamine in mammals. The present report concerns the development and validation of a sensitive HPLC‐ESI‐MS/MS method for the pharmacokinetic study of melamine in rat. The method employed a simple liquid–liquid extraction process for plasma sample cleanup, and the extraction recoveries of melamine from plasma were consistent at different concentrations. There was a linear relationship between chromatographic area and concentration over the range of 10–5000 ng/mL for melamine in plasma (R = 0.995). In this work, for the first time, melamine was administered intravenously and orally to Sprague–Dawley rats and the pharmacokinetic characteristics of this contaminant were investigated. The mean values of major pharmacokinetic parameters of oral availability, the mean steady‐state distribution volume (Vss), clearance, and plasma elimination half‐life (T1/2) of melamine in Sprague–Dawley rats were 72.9 ± 13.2%, 102.5 ± 12.5 mL/kg, 20.1 ± 3.8 mL/h/kg, and 4.9 ± 0.5 h, respectively. The rats pharmacokinetic study results suggested that melamine was predominantly restricted to blood or extracellular fluid and is not extensively distributed to most organ tissues. Meanwhile, melamine should be primarily eliminated by renal filtration for rats and does not undergo significant metabolism. These data should be useful to regulatory for risk assessment.  相似文献   

16.
The electron and proton transfer in phenol‐imidazole‐base systems (base = NH2? or OH?) were investigated by density‐functional theory calculations. In particular, the role of bridge imidazole on the electron and proton transfer was discussed in comparison with the phenol‐base systems (base = imidazole, H2O, NH3, OH?, and NH2?). In the gas phase phenol‐imidazole‐base system, the hydrogen bonding between the phenol and the imidazole is classified as short strong hydrogen bonding, whereas that between the imidazole and the base is a conventional hydrogen bonding. The n value in spn hybridization of the oxygen and carbon atoms of the phenolic CO sigma bond was found to be closely related to the CO bond length. From the potential energy surfaces without and with zero point energy correction, it can be concluded that the separated electron and proton transfer mechanism is suitable for the gas‐phase phenol‐imidazole‐base triads, in which the low‐barrier hydrogen bond is found and the delocalized phenolic proton can move freely in the single‐well potential. For the gas‐phase oxidized systems and all of the triads in water solvent, the homogeneous proton‐coupled electron transfer mechanism prevails. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
Proton transfer from the hydronium ion to NH3, CH3NH2, and (CH3)2NH is examined at the surface of ice films at 60 K. The reactants and products are quantitatively monitored by the techniques of Cs+ reactive‐ion scattering and low‐energy sputtering. The proton‐transfer reactions at the ice surface proceed only to a limited extent. The proton‐transfer efficiency exhibits the order NH3>(CH3)NH2=(CH3)2NH, which opposes the basicity order of the amines in the gas phase or aqueous solution. Thermochemical analysis suggests that the energetics of the proton‐transfer reaction is greatly altered at the ice surface from that in liquid water due to limited hydration. Water molecules constrained at the ice surface amplify the methyl substitution effect on the hydration efficiency of the amines and reverse the order of their proton‐accepting abilities.  相似文献   

18.
At the water–trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H+) and deuterium ions (D+) was identified. Alkali metal cations (such as Li+, Na+, K+) did not undergo this transfer. H+/D+ transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP]?, resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton‐coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents.  相似文献   

19.
The potential energy surfaces for the proton transfer processes in H+(H2O)n with n=2 ~ 11 have been studied using the semiempirical AM1 method. Two model systems were adopted: branched and linear systems. The branched system showed a tendency to form a bulk cluster, while the linear system showed a tendency toward a constant barrier height with increasing number of water molecules in the model system. The potential energy surfaces were discussed using Marcus theory. In the case of H+ (H2O)n with n=10 and 11, the intrinsic barrier to the proton transfer was found to be around 1.0 kcal/mol.  相似文献   

20.
Trichlorogermane triethylaminate [HGeCl3·NEt3] has been synthesized and its structure investigated using the methods of NMR and IR spectroscopy and quantum chemistry. Possible structures of complexes of triethylamine with trichlorogermane are considered. The presence of two minima on the potential energy surface is shown; the global minimum corresponds to the structure with proton transfer to the nitrogen atom, [Et3NH]+[GeCl3], while the local minimum lying by 25.8 kcal/mol above is characterized by the presence of very weak van-der-Waals interaction N···Ge. The comparison of the experimental and calculated chemical shifts of the proton is indicative of the formation of complex with proton transfer to the nitrogen atom in the liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号