首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

2.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SnI(NPPh3)]2 and [SnI3(NPPh3)]2 The phosphoraneiminato complex of the divalent tin, [SnI(NPPh3)]2 ( 1 ), originates from the reaction of metallic tin with N-iodine triphenylphosphaneimine, INPPh3, in dichloromethane suspension. 1 forms yellow, moisture sensitive crystals, which can be converted into the red phosphoraneiminato complex of the tetravalent tin, [SnI3(NPPh3)]2 ( 2 ), by oxidation with iodine. According to the crystal structure analyses 1 and 2 have centrosymmetric dimeric molecular structures in which the tin atoms are linked via the N atoms of the NPPh3 groups. The tin atoms in 1 have a ψ-tetrahedral coordination, those in 2 a trigonal-bipyramidal one. 1 : Space group P 1, Z = 1, lattice dimensions at –80 °C: a = 779.0(1), b = 1080.1(1), c = 1170.4(1) pm, α = 64.49(1)°, β = 88.42(1)°, γ = 79.13(1)°, R = 0.0293. 2 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1252.4(1), b = 1421.3(3), c = 1260.1(1) pm, β = 108.50(1)°, R = 0.0518.  相似文献   

3.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [AlCl2(NPEt3)]2, [GaI2(NPEt3)]2, and [GaI2(NPPh3)]2 [AlCl2(NPEt3)]2 ( 1 ) is made according to the known method by reaction of aluminium trichloride with the silylated phosphaneimine Me3SiNPEt3 in acetonitrile; it is isolated as colourless, moisture sensitive crystals. The phosphoraneiminato complexes [GaI2(NPEt3)]2 ( 2 ) and [GaI2(NPPh3)]2 ( 3 ), on the other hand, are obtained by redox reactions as pale yellow crystals; ( 2 ) of “gallium(I) iodide” with Me3SiNPEt3 in toluene and ( 3 ) of gallium with N-iodine triphenylphosphaneimine, INPPh3, in tetrahydrofuran. 1 and 3 are characterized spectroscopically and by crystal structure determinations; 2 is characterized only crystallographically. 1 : Space group Pbca, Z = 4; lattice dimensions at –70 °C: a = 1232.6(2), b = 1341.1(2), c = 1393.4(3) pm, R1 = 0.0315. 1 forms centrosymmetric molecules in which the Al atoms are linked via Al–N bonds of the two (NPEt3) groups; with 185.0 and 184.4 pm these bonds are of almost the same lengths. 2 : Space group Pbca, Z = 4; lattice dimensions at –80 °C: a = 1380.0(1), b = 1311.0(1), c = 1429.1(1) pm, R1 = 0.0273. 2 crystallizes isotypically with 1 . The gallium atoms of the centrosymmetric Ga2N2 four-membered ring are connected with Ga–N distances of equal length (190.9 pm). 3 · THF: Space group P212121, Z = 2; lattice dimensions at –140 °C: a = 1494.6(1), b = 1536.3(1), c = 974.6(1) pm, R1 = 0.0382. 3 forms dimeric molecules in which the gallium atoms are linked via the N atoms of the (NPPh3) groups to form a non-planar Ga2N2 four-membered ring of C2 symmetry with Ga–N bonds of equal lengths – within standard deviations – of 194.7 pm. The phosphoraneiminato groups are arranged in a synperiplanar way.  相似文献   

4.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

5.
Phosphaneimine and Phosphoraneiminato Complexes of Magnesium. The Crystal Structures of [MgBr1,25I0,75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2], [Mg2I2(Me3SiNPMe2CH2)(Me3SiNPMe2CH2CH(Me)O)(OEt2)], and [MgBr(NPMe3)]4 · C7H8 By reactions of the silylated phosphaneimine Me3SiNPMe3 with the Grignard reagents EtMgBr and MeMgI, respectively, the carbanionic phosphoraneiminato derivatives [XMg(CH2PMe2NSiMe3)]n (X ? Br, I) can be isolated as main products. The by-products of these reactions, [MgBr1.25I0.75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2] and [Mg2I2(CH2PMe2NSiMe3)(O(Me)CHCH2PMe2NSiMe3)(OEt2)] were identified by crystal structure determinations. The phosphoraneiminato complex [MgBr(NPMe3)]4 · C7H8 with hetero cubane structure is formed by a metathesis reaction of [ZnBr(NPMe3)]4 with RMgBr (R ? Ph. Mes).  相似文献   

6.
Phosphanimine and Phosphoraneiminato Complexes of Iron. The Crystal Structures of [FeCl3(Me3SiNPEt3)], [FeCl2(Me3SiNPEt3)]2, [FeCl2(NPEt3)]2, and [Fe(O2C? CH3)2(NPEt3)]2 The phosphanimine complexes [FeCl3(Me3SiNPEt3)] (red-orange) and [FeCl2(Me3SiNPEt3)]2 (colourless) have been prepared by reactions of Me3SiNPEt3 with FeCl3 and FeCl2, respectively, in CH2Cl2 suspensions. Thermal decomposition of these donor-acceptor complexes in boiling toluene leads to the phosphoraneiminato complex [FeCl2(NPEt3)]2 (black), whereas [Fe(O2C? CH3)2(NPEt3)]2 (brown) is formed from iron(II) acetate and Me3SiNPEt3 in boiling acetonitrile. The complexes are characterized by IR spectroscopy and by crystal structure determinations. [FeCl3(Me3SiNPEt3)] (1) : Space group P21/c, Z = 8, structure determination with 4 673 unique reflections, R = 0.033. Lattice dimensions at ?15°C: a = 1 607.8, b = 1 602.0, c = 1 417.2 pm, β = 106.56°. 1 forms monomeric molecules with tetrahedrally coordinated iron atoms. Bond lengths in average: Fe? N = 196.9 pm, Fe? Cl = 219.7 pm. [FeCl2(Me3SiNPEt3)]2 (2) : Space group P21/c, Z = 4, structure determination with 4 992 unique reflections, R = 0.048. Lattice dimensions at 20°C: a = 1 457.9, b = 1 685.4, c = 1 507.3 pm, β = 116.74°. 2 forms dimeric molecules, which are associated by chloro bridges. The iron atoms are tetrahedrally coordinated with trans positions of the phosphanimine ligands. Both lengths in average: Fe? N = 202.2 pm, Fe? Clterminal = 224.7 pm, Fe? Cl bridge = 241.0 pm. [FeCl2(NPEt3)]2 (3): Space group P21/n, Z = 2, structure determination with 2763 unique reflections, R = 0.039. Lattice dimensions at ?70°C: a = 799.1, b = 1009.0, c = 1441.9 pm, β = 93.45°. 3 forms centrosymmetric dimeric molecules, in which the tetrahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands. Bond lengths in average: Fe? N = 191.4 pm, Fe? Cl = 222.7 pm. [Fe(O2C? CH3)2(NPEt3]2 (4): Space group P21/n, Z = 2, structure determination with 3005 observed unique reflections, R = 0.034. Lattice dimensions at -65°C: a = 886.4, b = 1444.6 pm, β = 90.60°. 4 forms centrosymmetric dimeric molecules, in which the octahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands with bond lengths Fe? N of 191.9 and 195.0 pm. The acetate groups are coordinated in a chelating fashion.  相似文献   

7.
Phosphorane Iminato Complexes of Sulfur. Synthesis and Crystal Structures of [SO(Cl)(NPPh3)], [SO2(Cl)(NPPh3)], and [SCl(NPPh3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SOCl2, SO2Cl2, and SCl2, respectively. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [SO(Cl)(NPPh3)]: Space group P21/n, Z = 4, structure determination with 2 434 observed unique reflections, R = 0.047. Lattice dimensions at 19°C: a = 1 304.8, b = 996.5, c = 1 339.5 pm, β = 93.75°. The compound forms monomeric molecules with a remarkably long S? Cl bond of 234.2 pm and distances SN and PN of 154.6 and 161.6 pm, respectively, which agree with double bonds. [SO2(Cl)(NPPh3)]: Space group P21/n, Z = 4, structure solution with 2 872 observed, unique reflections, R = 0.047. Lattice dimensions at 20°C: a = 956.9, b = 1 909, c = 1 002.0 pm, β = 106.06°. The compound forms monomeric molecules with distances S? Cl of 207.1 pm, SN of 154.5 pm, and PN of 161.6 pm. [SCl(NPPh3)2]Cl: Space group P21/c, Z = 4, structure solution with 5 224 observed, unique reflections, R = 0.042. Lattice dimensions at 20°C: a = 1 108.6, b = 1 603.8, c = 1 840.5 pm, β = 99.98°. The compound forms ions [SCl(NPPh3)2]+ and Cl?. In the cation the sulfur atom is φ-tetrahedrally coordinated with a long S? Cl distance of 248.5 pm and SN bond lengths of 154.5 and 156.0 pm.  相似文献   

8.
Phosphoraneiminato Complexes of Bismuth(III). Crystal Structures of [BiF2(NPEt3)(HNPEt3)]2 and [Bi2I(NPPh3)4]I3 [BiF2(NPEt3)(HNPEt3)]2 ( 1 ) has been obtained by the reaction of BiF3 with Me3SiNPEt3 at 100 °C and subsequent extraction with 1,2‐dimethoxyethane in the presence of traces of water forming pale‐yellow, moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P21/n, Z = 4, lattice dimensions at –83 °C: a = 2105.0, b = 1195.8, c = 728.2 pm, β = 92.55°. 1  forms centrosymmetric dimeric molecules, in which the Bi atoms are linked via Bi–N bonds of varying length (213.9 and 240.1 pm) of the NPEt3 groups to form a Bi2N2 four‐membered ring. The longer one of the two Bi–N bonds is trans to one terminal F atom. [Bi2I(NPPh3)4]I3 ( 2 ) has been obtained by the reaction of bismuth with N‐iodine triphenylphosphaneimine in dichloromethane forming red crystals. Crystal structure determination of 2 · 2.5 CH2Cl2: Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1542.6, b = 2409.1, c = 2173.5 pm, β = 105.82°. In 2 the Bi atoms are linked via two N atoms of two NPPh3 groups to form a non‐planar Bi2N2 four‐membered ring with a fold angle of 27° along the N…N connection line. The two remaining NPPh3 groups are terminally connected and bent in the same direction. The iodide ion caps the two Bi atoms so that a [Bi2I(NPPh3)4]+ cation is formed.  相似文献   

9.
Phosphoraneiminato Complexes of Rare-Earth Elements. Crystal Structures of [Yb2Cp3(NPPh3)3], [YCp(NPPh3)(μ-OSiMe2NPPh3)]2, and [M(NPPh3)2(μ-OSiMe2NPPh3)]2 with M = Y and Sm The ytterbium complex [Yb2Cp3(NPPh3)3] with sesqui distribution of cyclopentadienide and phosphoraneiminato ligands is made from YbCp2Cl and LiNPPh3 in boiling toluene and isolated as yellow, moisture sensitive crystals, which enclose three molecules of toluene per unit cell. [Yb2Cp3(NPPh3)3] · 3 C7H8 ( 1 ): Space group Pbca, Z = 8, lattice dimensions at –80 °C: a = 2727.6(2), b = 1977.5(1), c = 2848.9(2) pm; R = 0.0541. Two of the (NPPh3)-groups link the ytterbium atoms to a nonplanar Yb2N2 four-membered ring with a folding angle of 17.1° along the Yb…Yb connecting line. The third (NPPh3) group is terminally bonded with a short Yb–N distance of 214.2 pm. [YCp(NPPh3)(μ-OSiMe2NPPh3)]2 · 4 C7H8 ( 2 ) originates from YCpCl2 and LiNPPh3 in boiling toluene with Baysilon-paste participating forming colourless, moisture sensitive crystals. Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1469.0(1), b = 1234.1(1), c = 2761.5(2) pm, β = 93.196(10)°; R = 0.0518. In 2 the yttrium atoms are linked via the oxygen atoms of the (OSiMe2NPPh3) groups to form a centrosymmetric Y2O2 four-membered ring with Y–O bonds of different lengths. Together with the terminally bonded (NPPh3)-ligand, the η5-C5H5 group, and the N atom of the siloxyphosphaneimine group, which functions as a donor atom, the Y atoms achieve coordination number five. [Y(NPPh3)2(μ-OSiMe2NPPh3)]2 · 2 C7H8 ( 3 ) and [Sm(NPPh3)2(μ-OSiMe2NPPh3)]2 ( 4 ) originate from the metal trichlorides with KNPPh3 in THF with Baysilon paste participating and subsequent crystallization from toluene as colourless, moisture sensitive crystal needles. 3 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1804.1(2), b = 1401.8(1), c = 2221.6(2) pm, β = 98.716(9)°; R = 0.0537. 4 : Space group P 1, Z = 1, lattice dimensions at –80 °C: a = 1363.4(1), b = 1364.9(1), c = 1650.6(1) pm; α = 112.457(8)°, β = 91.948(9)°, γ = 114.974(8)°; R = 0.0308. 3 and 4 form centrosymmetric dimeric molecules in which the metal atoms are linked via the oxygen atoms of the (OSiMe2NPPh3) groups to form M2O2 four-membered rings with M–O bonds of varying length. Together with the terminally bonded (NPPh3) ligands and the N atom of the siloxyphosphaneimine ligand, which functions as a donor atom, the metal atoms achieve coordination number five.  相似文献   

10.
Phosphoraneiminato Complexes of Cobalt and Zinc with Heterocubane Structure. Crystal Structures of [CoI(NPMe3)]4 and [ZnI(NPMe3)]4 The title compounds have been prepared from CoI2 and ZnI2, respectively, and Me3SiNPMe3 by fusion reactions at 180°C in the presence of sodium fluoride. They crystallize from dichloromethane as dark green (Co) or colourless (Zn) single crystals including three molecules CH2Cl2 per formula unit, which were characterized by crystal structure determinations. [CoI(NPMe3)]4 · 3 CH2Cl2: Space group P3m1, Z = 2, structure solution with 2376 independent reflections, R = 0.033. Lattice dimensions at ?50°C: a = b = 1455.8, c = 1270.5 pm. [ZnI(NPMe3)]4 · 3 CH2Cl2: Space group P3m1, Z = 2, structure solution with 2197 independent reflections, R = 0.043. Lattice dimensions at ?60°C: a = b = 1454.9, c = 1270.5 pm. Both complexes are isostructural with one another. They form heterocubane structures in which the metal atoms are linked via μ3-N-bridges of the phosphoraneiminato groups with M4N4 bridge-type bond angles close to 90°.  相似文献   

11.
Phosphoraneiminato Complexes of Manganese(II) and Nickel(II) with Heterocubane Structure. Crystal Structures of [MCl(NPEt3)]4 with M = Mn and Ni The phosphoraneiminato complexes [MCl(NPEt3)]4 with M = manganese and nickel as well as [MnBr(NPEt3)]4 are formed from the anhydrous halides MX2 and excess phosphoraneimine Me3SiNPEt3 by fusion reaction. They form paramagnetic, moisture-sensitive, orange (M = Mn) and turquoisegreen (M = Ni) crystals, respectively, which are characterized by i.r. spectroscopy and by crystal structure determinations. [MnCl(NPEt3)]4 ( 1 ): Space group C2/c, Z = 4, structure solution with 3 591 unique reflections, (2 811 > 2σ(I)) R = 0.036. Lattice dimensions at -50°C: a = 2104.3, b = 1100.6, c = 1966.5 pm, β = 115.87°. [NiCl(NPEt3)]4 ( 2 ): Space group C2/c, Z = 4, structure solution with 2 711 unique reflections, (1611 > 2σ(I)) R = 0.056. Lattice dimensions at ?50°C: a = 2051.6, b = 1099.2, c = 1954.6 pm, β = 115.80°. 1 and 2 are isostructural with one another. They form heterocubane structures in which the metal atoms are linked via μ3-N-bridges of the phosphoraneiminato groups with M4N4 bridge-type bond angles close to 90°.  相似文献   

12.
Phosphorane Iminato Complexes of Niobium and Tantalum. Crystal Structures of [NbCl4(NPiPr3)(CH3CN)], [NbCl3(NPiPr3)2], [TaCl4(NPiPr3)]2, and [TaCl3(NPiPr3)2] The title compounds have been prepared from the pentachlorides of niobium and tantalum with the silylated phosphorane imine Me3SiNPiPr3. They are characterized by IR spectroscopy and crystal structure determinations. NbCl4(NPiPr3)(CH3CN)] . Space group Pna21, Z = 4, 2102 observed unique reflections, R = 0.022. Lattice dimensions at ?50°C: a = 1627.2, b = 876.3, c = 1335.3 pm. The compound forms monomeric molecules with the acetonitrile molecule in trans position to the phosphorane iminato group. This group shows a short NbN distance of 178.2 pm with a NbNP bond angle of 165.2°. [NbCl3(NPiPr3)2] . Space group Cc, Z = 4, 2534 observed unique reflections, R = 0.046. Lattice dimensions at 20°C: a = 1302.65, b = 1321.69, c = 1672.04 pm, β = 111.713°. The compound forms monomeric molecules with a distorted bipyramidal surrounding of the niobium atom and equatorially arranged phosphorane iminato groups. [TaCl4(NPiPr3)]2 . Space group Pbca, Z = 4, 1537 observed unique reflections, R = 0.037. Lattice dimensions at ?40°C: a = 1420.6, b = 1483.9, c = 1622.0 pm. The compound forms centrosymmetric dimeric molecules with dissimilarly long Ta2Cl2 bridges and equatorially arranged phosphorane iminato groups. [TaCl3(NPiPr3)2] . Space group Cc, Z = 4, 5737 observed unique reflections, R = 0.039. Lattice dimensions at ?50°C: a = 1303.9, b = 1327.2, c = 1682.1 pm, β = 111,92°. The compound is isotypical with the corresponding niobium compound.  相似文献   

13.
Phosphorane Iminato-Trichloroselenates(II): Syntheses and Crystal Structures of [SeCl(NPPh3)2]+SeCl3? and [Me3SiN(H)PMe3]2+[Se2Cl6]2? [SeCl(NPPh3)2]+SeCl3? has been synthesized by the reaction of Se2Cl2 with Me3SiNPPh3 in acetonitrile solution, forming orangered crystals, whereas red crystals of [Me3SiN(H)PMe3]2+[Se2Cl6]2? were obtained by the reaction of Me3SiNPMe3 with SeOCl2 in acetonitrile solution. Both complexes were characterized by X-ray structure determinations. [SeCl(NPPh3)2]+SeCl3?: Space group P21/n, Z = 4, structure solution with 7 489 observed unique reflections, R = 0.057. Lattice dimensions at ?60°C: a = 1 117.0; b = 2 241, c = 1 407.5 pm, β = 95.61°. In the cation [SeCl(NPPh3)2]+ the selenium atom is φ-tetrahedrally coordinated by the chlorine atom and by the nitrogen atoms of the phosphorane iminato ligands, whereas the anion SeCl3? has a T-shaped structure with φ-trigonal-bipyramidale surrounding of the selenium atom. [Me3SiN(H)PMe3]2+[Se2Cl6]2?: Space group P21/c, Z = 4, structure solution with 2 093 observed unique reflections, R = 0.080. Lattice dimensions at ?70°C: a = 956, b = 828, c = 1 973 pm, β = 93.80°. The structure consists of [Me3SiN(H)PMe3]+ ions and planar [Se2Cl6]2? anions, in which the selenium atoms are bridged nearly symmetrically by two chlorine atoms.  相似文献   

14.
Phosphoraneiminato Complexes of Titanium(IV). Crystal Structures of [TiCl3(NPEt3)]2, [TiCl3(NPEt3)(THF)2], and [TiCl4{Me2Si(NPEt3)2}] [TiCl3(NPEt3)]2 ( 1 ) is formed from titanium(IV) chloride and the silylated phosphaneimine Me3SiNPEt3 in dichloromethane as reddish-brown, moisture-sensitive crystals. According to the crystal structure analysis these crystals show centrosymmetric Ti2N2 four-membered rings with Ti–N distances of 184.7 and 210.3 pm. With tetrahydrofurane 1 forms yellow, moisture sensitive crystals of the solvate [TiCl3(NPEt3)(THF)2] ( 2 ), in which the titanium atom is octahedrally coordinated. The THF molecule which is in trans position to the phosporaneiminato ligand realizes but a very weak Ti–O bond of 238.0 pm, the cis THF molecule shows a Ti–O distance of 213.7 pm. With 173.4 pm along with a TiNP bond angle of 160.0° the TiN distance is very short. The bis(phosphaneimine) complex [TiCl4{Me2Si(NPEt3)2}] ( 3 ) is formed as colourless crystals in low yield in the reaction of titanium(IV) chloride with Me3SiNPEt3 and trimethylcyclopentadienylsilane. In 3 the titanium atom is surrounded by four chlorine atoms in a distorted octahedral fashion and by the two N atoms of the Me2Si(NPEt3)2 molecule with TiN distances of 205.6 pm.  相似文献   

15.
Phosphoraneiminato Complexes of Titanium. Synthesis and Crystal Structures of CpTiCl2(NPMe3), [TiCl3(NPMe3)]2, [Ti2Cl5(NPMe2Ph)3], and [Ti3Cl6(NPMe3)5][BPh4] The title compounds are formed from Cp2TiCl2 and titanium tetrachloride, respectively, and the corresponding phosphane imino compounds Me3SiNPMe3 and Me3SiNPMe2Ph. The tetraphenyl borate salt yielded from the reaction of [Ti3Cl6(NPMe3)5]Cl with NaBPh4. All compounds form yellow crystals which are sensitive to moisture. They were characterized by IR-spectroscopy and crystal structure analyses. CpTiCl2(NPMe3) ( 1 ): Space group Pbca, Z = 8, solution of the structure with 1632 observed independent reflections, R = 0.037. Lattice dimensions at 19°C: a = 1202.6, b = 1224.2, c = 1766.7 pm. The molecules of the compound are monomeric with the (NPMe3)? ligand in almost linear array (bond angle Ti? N? P 170.7°). [TiCl3(NPMe3)]2 ( 2 ): Space group Pbca, Z = 8, structure solution with 698 observed independent reflections, R = 0.030. Lattice dimensions at ?60°C: a = 1140.5, b = 1112.2, c = 1589.4 pm. In 2 the titanium atoms, which occur in trigonal bipyramidal coordination, are linked by the N atoms of the (NPMe3)? groups to form a centrosymmetric dimer with Ti? N bond lengths of 184.3 and 208.2 pm. [Ti2Cl5(NPMe2Ph)3] · CH2Cl2 ( 3 ): Space group Pca21, Z = 4, structure solution with 8477 observed independent reflections, R = 0.051. The lattice dimensions at 20°C are: a = 1221.0; b = 1407.5, c = 2139.3 pm. 3 can be understood as a reaction product of TiCl2(NPMe2Ph)2 and TiCl3(NPMe2Ph). In the resulting, heavily distorted Ti2N2-four-membered ring the Ti? N bond lenghts are 1804., 194.4, 199.2, and 234.6 pm. The longest Ti? N bond is in trans-position to the N atom of the terminal (NPMe2Ph)- ligand, in which the Ti? N distance is 175.6 pm. .[Ti3CL6(NPMe3)5][BPh4] (4): Space group P21/n, structure solution with 2846 observed independent reflections, R = 0.062. The lattice dimensions at 20°C are: a = 1495.2, b = 2335.4, c = 155,8 pm, β = 93.28°. In the cation of 4 the three titanium atoms along with three (NPMe3)- groups with μ2- N functions and two (NPMe3)- groups with μ3- N functions form a nation number 6 with two terminal chlorine atoms.  相似文献   

16.
Phosphorane Iminato Complexes of Titanium(IV) and Titanium(III). The Crystal Structures of [TiCl2(OMe)(NPPh3)]2, [TiBr2(NPPh3)]2 · 3C7H8, and [Ph3PNH2]Br · CH2Cl2 TiCl3(NPPh3) reacts with a solution of methyllithium in diethyl ether in the presence of lithiummethylate forming yellow [TiCl2(OMe)(NPPh3)]2. On reaction with benzyl magnesium bromide TiCl3(NPPh3) in diethyl ether is converted into green [TiBr2(NPPh3)]2 under reduction and ligand exchange. [TiBr2(NPPh3)]2 crystallizes from toluene with three molecules C7H8. [Ph3PNH2]Br · CH2Cl2 originates as a side product of this reaction. The products are characterized by their i.r. spectra and by crystal structure analyses. [TiCl2(OMe)(NPPh3)]2 . Space group P1 , Z = 2, structure solution with 2909 independent reflections, R = 0.063. Lattice dimensions at 20°C: a = 1005.1, b = 1044.5, c = 1068.6 pm, α = 66.98°, β = 89.35°, γ = 80.24°. The compound forms centrosymmetric dimeric molecules with μ2-OMe bridges and five-fold coordinated titanium atoms. The (NPPh3?) ligand is terminally connected with a Ti = N distance of 174.8 pm and with a TiNP bond angle of 165.3°. [TiBr2(NPPh3)]2 · 3 C7H8 . Space group P1 , Z = 2, structure solution with 5548 independent reflections, R = 0.053. Lattice dimensions at ?70°C: a = 983.3, b = 1162.7, c = 1376.5 pm, α = 100.53°, β = 110.30°, γ = 105.24°. The compound forms centrosymmetric dimeric molecules with μ2-NPPh3 bridges and tetrahedral coordination at the titanium atoms. With 195.9 pm the Ti–N bonds correspond with single bonds. The Ti …? Ti distance of 260.0 pm is exceptionally short. [Ph3PNH2]Br · CH2Cl2 . Space group P1 , Z = 1, structure solution with 3091 independent reflections, R = 0.049. Lattice dimensions at 20°C: a = 909.4, b = 1004.4, c = 1158.5 pm, α = 108.09°, β = 94.67°, γ = 91.92°. The bromide ions are bonded to a one-dimensional infinite network via hydrogen bridge bonds of the cation and of the dichloromethane.  相似文献   

17.
Phosphorane Iminato Complexes of Sulfur. Syntheses and Crystal Structures of [O3SS(NPPh3)2] · CH3CN, [SO(NPPh3)2], and [SCl(NPMe3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SO2 and SOCl2, respectively, and by the reaction of Me3SiNPMe3 with S2Cl2. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [O3SS((NPPh3)2)] · CH3CN : Space group Pca21, Z = 4, structure solution with 4016 observed unique reflections, R = 0.050. Lattice dimensions at ?60°C: a = 1865.1, b = 1168.4, c = 1569.0 pm. The compound has a zwitterionic structure with a S? S bond length of 218.2 pm and bond lengths S? N of 161.2 and P? N of 160.1 pm. [SO(NPPh3)2] : Space group P21/c, Z = 4, structure solution with 2854 observed unique reflections, R = 0.113. Lattice dimensions at ?50°C: a = 1173.1, b = 1585.6, c = 1619.2 pm, b? = 98.13°. The compound forms monomeric molecules, in which the positions of S and N atoms are disordered in two positions. The bond lengths are S? N 166 pm and P? N 163 pm in average. [SCl(NPMe3)2]Cl : Space group P1 , Z = 2, structure solution with 2416 observed unique reflections, R = 0.038. Lattice dimensions at 20°C: a = 613.2, b = 1030.3, c = 1111.4 pm, α = 88.48°, b? = 88.01°, γ = 83.10°. The compound forms ions [SCl(NPMe3)2]+ and Cl?. In the cation the sulfur atom is ?-tetrahedrally coordinated with a long S? Cl distance of 246.9 pm and bond lengths S? N of 155.3 pm and P? N of 164.3 pm in average.  相似文献   

18.
Phosphorane Iminato Complexes of Titanium. The Crystal Structures of [TiCl2(NPPh3)2] and [TiCl3(NPMe2Ph)(CH3CN)]2 [TiCl2(NPPh3)2] has been prepared by the reaction of [TiCl3(NPPh3)] with excess Me3SiNPPh3 in a melt at 220°C, forming colourless crystals. [TiCl3(NPMe2Ph)(CH3CN)]2 is formed as yellow, moisture sensitive crystals from acetontrile solutions of [TiCl3(NPMe2Ph)]2, which on its part has been obtained by the reaction of TiCl4 with Me3SiNPMe2Ph. The complexes are characterized by IR spectroscopy and by crystal structure determinations. [TiCl2(NPPh3)2] . Space group Fdd2, Z = 8, structure refinement with 2875 observed unique reflections, R = 0.039. Lattice dimensions at 19°C: a = 2080.9, b = 3308.5, c = 973.6 pm. The compound forms monomeric molecules with bond lengths TiN of 179.0 pm and PN of 156.8 pm, which correspond with double bonds. The bond angle TiNP is 166.6°. [TiCl3(NPMe2Ph)(CH3CN)]2 . Space group P1 , Z = 1, structure refinement with 2577 unique reflections, R = 0.039 for reflections with I > 2σ(I). Lattice dimensions at 20°C: a = 856.6, b = 923.1, c = 1008.3 pm, α = 81.23°, β = 71.63°, γ = 81.41°. The compound forms centrosymmetric, dimeric molecules, in which the titanium atoms are linked via chloro bridges TiCl2Ti with TiCl bond lengths of 243.9 and 270.3 pm. In trans-position to the longer TiCl bonds the nitrogen atoms of the phosphorane iminato groups are coordinated with bond lengths TiN of 173.9 pm and PN of 161.4 pm which again correspond with double bonds. The bond angle TiNP is 156.4°.  相似文献   

19.
Syntheses and Crystal Structures of the Rare-Earth Complexes [LaI2(THF)5]+I3?, [SmCl3(THF)4], [ErCl2(THF)5]+ [ErCl4(THF)2]?, [ErCl3(DME)2], and [Na(18-Crown-6)(THF)2]+[YbBr4(THF)2]? [LaI2(THF)5]+I3? ( 1 ) is obtained as red crystals from lanthanum powder and 1,2-diiodoethane in THF on exposure to light. Space group Pbcn, Z = 4, lattice dimensions at ?83°C: a = 1264.9, b = 2218.9, c = 1199.1 pm, R = 0.031. The lanthanum atom of the cation of 1 is coordinated with iodine atoms in the axial positions in a pentagonal-bipyramidal way. [SmCl3(THF)4] ( 2 ) originates as colourless crystals on heating SmCl3 with excess THF in the presence of Me3SiNPEt3. Space group P21/c, Z = 8, lattice dimensions at ?50°C: a = 3092.7, b = 826.2, c = 1758.3 pm, β = 93.85°, R = 0.054. Just like the known sample that crystallizes within the space group F2dd, 2 forms monomeric molecules in which the samarium atom is coordinated with two chlorine atoms in the axial positions in a distorted pentagonal-bipyramidal way. [ErCl2(THF)5]+[ErCl4(THF)2]? ( 3 ). Pale pink single crystals of 3 were prepared according to the described method by reaction of erbium powder with trimethylchlorosilane and methanol in THF. Space group C2/c, Z = 4, lattice dimensions at ?50°C: a = 1246.3, b = 1145.7, c = 2726.0 pm, β = 91.293°, R = 0.036. The erbium atom of the cation of 3 has a pentagonal-bipyramidal coordination with the chlorine atoms in the axial positions. Within the anion the THF molecules are in trans-arrangement of the octahedrally coordinated erbium atom. [ErC13(DME)2] ( 4 ) originates as pink single crystals from 3 with excess boiling 1,2-dimethoxyethane. Space group P21/c, Z = 4, lattice dimensions at ?50°C: a = 1137.2, b = 886.5, c = 1561.1 pm, β = 104.746°, R = 0.032. 4 forms monomeric molecules in which the erbium atom has a pentagonal-bipyramidal surrounding with two chlorine atoms in the axial positions. [Na(18-Krone-6)(THF)2]+ [YbBr4(THF)2]? ( 5 ) is formed as by-product by the reaction of YbBr3 with NaN(SiMe3)2 in THF in the presence-of 18-crown-6 forming colourless crystals. Space group P1 , Z = 1, lattice dimensions at ?70°C: a = 934.6, b = 988.9, c = 1208.0 pm, α = 73.82°, β = 72.98°, γ = 76.89°, R = 0.029. 5 contains isolated [YbBr4(THF)2]?ions, in which the THF molecules are arranged in trans-position.  相似文献   

20.
Phosphoraneiminato Complexes of Iodine. Syntheses and Crystal Structures of Ph3PNIO2 and Ph3PNSiMe3 · I2 Ph3PNIO2 has been prepared as yellow crystals by the reaction of Ph3PNSiMe3 with I2O5 in boiling acetonitrile, whereas the molecular complex Ph3PNSiMe3 · I2 is formed as brown crystals by the reaction of Ph3PNSiMe3 with iodine in acetonitrile solution. Both complexes were characterized by crystal structure determinations. Ph3PNIO2: Space group P21/n, Z = 4, 2 858 observed unique reflections, R = 0.039. Lattice dimensions at 19°C: a = 972.8(2), b = 1 743.4(3), c = 1 073.7(2) pm, β = 115.46(3)°. The compound forms monomeric molecules with pyramidal geometry at the iodine atom. The bond angle PNI (126.9°) is unusually small; the PN bond length of 159.2 pm corresponds with a double bond. Ph3PNSiMe3 · I2: Space group P1 , Z = 2, 3 560 observed unique reflections, R = 0.033. Lattice dimensions at 19°C: a = 941.2(2), b = 1 041.7(2), c = 1 287.4(3) pm, α = 78.34(1)°, β = 72.00(2)°, γ = 86.08(2)°. The compound forms monomeric molecules, in which the I2 molecule and the nitrogen atom of the phosphoraneimine molecule realize a linear N? I? I axis with a bond length N? I of 243.2 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号