首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

2.
On the Sodium Tetrahydroxoaluminate Chloride Na2[Al(OH)4]Cl The hitherto unknown compound Na2[Al(OH)4]Cl was prepared by crystallisation from a NaCl containing sodium aluminate solution. According to the X-ray single crystal investigation (tetragonal, space group P4/nmm, a = 7.541 Å, c = 5.059 Å, Z = 2) the compound represents the first example of a crystalline hydroxoaluminate with monomeric [Al(OH)4]? anions. Cl? shows a quadratic anti prismatic coordination to 4 Na+ and over hydrogen bonds to 4 O2? while Na+ is octahedrally coordinated by 4 O2? and 2 Cl? (axial). The results of the crystal structure analysis are confirmed by 27Al and 23Na MAS NMR investigations. Na2[Al(OH)4]Cl decomposes at about 200°C without intermediates under formation of β-NaAlO2 and NaCl.  相似文献   

3.
An Anionic Oxohydroxo Complex with Bismuth(III): Na6[Bi2O2(OH)6](OH)2 · 4H2O Colourless, plate‐like, air sensitive crystals of Na6[Bi2O2(OH)6](OH)2 · 4H2O are obtained by reaction of Bi2O3 or Bi(NO3)3 · 5H2O in conc. NaOH (58 wt %) at 200 °C followed by slow cooling to room temperature. The crystal structure (triclinic, P 1¯, a = 684.0(2), b = 759.8(2), c = 822.7(2) pm, α = 92.45(3)°, ß = 90.40(3)°, γ = 115.60(2)°, Z = 1, R1, wR2 (all data), 0, 042, 0, 076) contains dimeric, anionic complexes [Bi2O2(OH)6]4— with bismuth in an ψ1‐octahedral coordination of two oxo‐ and three hydroxo‐ligands. The thermal decomposition was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In the final of three steps the decomposition product is Na3BiO3.  相似文献   

4.
On the Crystalline Phases of the Systems M O? Al2O3? H2O (MI = K, Na) In the system K2O? Al2O3? H2O the compounds K2O · Al2O3 · 3 H2O, K2O · Al2O3 · 2 H2O and K2O · Al2O3 · 1 H2O exist. The results of 27Al and 1H NMR and IR spectroscopic investigations as well as thermoanalytical measurements confirm the existence of dimeric anions with tetrahedrally coordinated Al for the 3-hydrate. In the case of the two other hydrates higher molecular anions occur, also formed by AlO4 tetrahedra. In the system Na2O? Al2O3? H2O a compound with a composition Na2O · Al2O3 · 2,5 H2O and two alkali oxide rich phases (Na/Al > 3) are observed. In monosodium aluminate hydrate there are highly polymerized anions with tetrahedrally coordinated Al, whereas the alkali oxide rich phases are probably built up by monomeric [Al(OH)6]3? anions.  相似文献   

5.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

6.
On the Compound BaO · Al2O3 · 7 H2O On the basis of investigations using 27Al, 1H NMR, IR and thermoanalytical methods for the compound BaO · Al2O3 · 7 H2O a constitution as Ban[Al2(OH)8]n · 3n H2O with condensed AlO6 groups, sharing edges, is proposed. Relations between the Ba/Al ratio and the constitution of anions of barium aluminate hydrates are discussed.  相似文献   

7.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

8.
Complex Hydroxides of Chromium: Na9[Cr(OH)6]2(OH)3 · 6 H2O and Na4[Cr(OH)6]X · H2O (X = Cl, (S2)1/2) – Synthesis, Crystal Structure, and Thermal Behaviour Green plate‐like crystals of Na9[Cr(OH)6]2(OH)3 · 6 H2O (triclinic, P1, a = 872.9(1) pm, b = 1142.0(1) pm, c = 1166.0(1) pm, α = 74.27(1)°, β = 87.54(1)°, γ = 70.69(1)°) are obtained upon slow cooling of a hot saturated solution of CrIII in conc. NaOH (50 wt%) at room temperature. In the presence of chloride or disulfide the reaction yields green prismatic crystals of Na4[Cr(OH)6]Cl · H2O (monoclinic, C2/c, a = 1138.8(2) pm, b = 1360.4(1) pm, c = 583.20(7) pm, β = 105.9(1)°) or green elongated plates of Na4[Cr(OH)6](S2)1/2 · H2O (monoclinic, P21/c, a = 580.8(1) pm, b = 1366.5(3) pm, c = 1115.0(2) pm, β = 103.71(2)°), respectively. The latter compounds crystallize in related structures. All compounds can be described as distorted cubic closest packings of the anions and the crystal water molecules with the cations occupying octahedral sites in an ordered way. The thermal decomposition of the compounds was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In all cases the final decomposition product is NaCrO2.  相似文献   

9.
X‐ray crystal structures are reported for Na6[RuO2{TeO4(OH)2}2]·16H2O and Na5[Ag{TeO4(OH)2}2]·16H2O which contain respectively RuVI and AgIII coordinated to chelating bidentate tellurate ([TeO4(OH)2]4−) groups. Na6[RuO2{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 6.9865(1), b = 8.7196(2), c = 11.7395(2)Å, α = 74.008(1), β = 79.954(1), γ = 88.514(1)°; R1 = 0.025. Na5[Ag{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 5.888(1), b = 8.932(1), c = 12.561(2)Å, α = 98.219(6), β = 97.964(9), γ = 93.238(14)°; R1 = 0.047.  相似文献   

10.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

11.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

12.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

13.
Te(OH)6 · 2Na3P3O9 · 6H2O, is hexagonal (P63/m) with a = 11,67(1), c = 12,12(1) Å, Z = 2 and Dx = 2,225 g/cm3. Te(OH)6 · K3P3O9 · 2H2O, is monoklin (P21/c) with a = 19,61(5), b = 7,456(1), c = 14,84(6) Å, = 108,01(4), Z = 4 and Dx = 2,506 g/cm3. Both compounds are the first examples of phosphate tellurates in which the anion phosphate is condensed to the ring anion P3O9. As in phosphate tellurates already described the phosphate groups are independent of the TeO6 octahedra.  相似文献   

14.
Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O – A Telluric Acid-rich Inclusion Compound Single crystals of Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O have been grown from aqueous solution. It crystallizes triclinically in space group P1 with Z = 1, a = 1 086.6(1), b = 1 095.6(1), c = 1 105.5(1) pm, α = 118.83(1), β = 106.22(1) and γ = 100.00(1)°. X-ray structure determination (5 755 reflections, 251 parameters, Rg = 0.0355) revealed an infinite chain consisting of hydrogen bonded (OH …? O 259.4(5) – 267.4(6) pm) Te(OH)6 molecules and [TeMo6O24]6? anions to be the Prominent structural feature. Further hydrogen bonds between neighbouring Te(OH)6 molecules connect these chains to yield a two-dimensionally infinite arrangement.  相似文献   

15.
Ternary Hydroxides. I. Synthesis, Structure, and Properties of Li2[Sn(OH)6] · 2 H2O Colourless crystals of Li2[Sn(OH)6] · 2 H2O were synthesized by reaction of SnCl4 with LiOH in aqueous solution. The crystal structure was determined from single crystal data. Li2[Sn(OH)6] · 2 H2O: monoclinic, P21/n (Nr. 14), a = 502.3(1), b = 692.3(1), c = 1020.2(3) pm, β = 99.78(1)°, V = 349.6(2) · 106 pm3, Z = 2, R/Rw = 0.0192/0.0472, N(I) > 2σ(I) = 1527, N(Par.) = 54. Within the crystal structure only slightly distorted octahedrally [Sn(OH)6]2? ions are bonded via hydrogen bonds with water molecules forming layers, which themselve are linked by tetrahedrally coordinated Li ions; the structure is in accordance with the IR-data and the results of the 119Sn solid state NMR-spectroscopy; the hydrat water is eliminated at 117.1°C, the condensation reaction – forming the ternary oxide – takes place at 257.7°C.  相似文献   

16.
Crystalline sodium aluminogermanate hydroxosodalite hydrate Na6+x[Al6Ge6O24](OH)x · nH2O with x ≈ 1.6 and n ≈ 3.0 has been synthesized by reacting Al2O3, GeO2 and NaOH solution under hydrothermal conditions, and characterized by means of simultaneous thermal analysis, differential scanning calorimetry, X-ray and neutron diffraction as well as 1H and 23Na MAS NMR and IR spectroscopy. The material undergoes a reversible structural phase transition at Tc = 166 K (heating mode), which is actually a complex two-step transformation as detected in DSC measurements. Structure refinements of the cubic high-temperature form (cell constant a = 9.034(2) Å, room temperature) with single-crystal X-ray and powder neutron diffraction data have not yielded overall satisfactory results, probably due to the solid-solution character of the hydrosodalite. The refinements nevertheless demonstrate that (i) the sodalite host framework is a strictly alternating array of corner-linked AlO4 and GeO4 tetrahedra, and (ii) most polyhedral [4668] cavities are occupied by four sodium cations and one orientationally disordered hydrogen dihydroxide anion, H3O2?, which possesses a strong central hydrogen bond. Variable-temperature 1H MAS NMR spectra unambiguously confirm the presence of H3O2? ions and, in addition, reveal a dynamical intraionic exchange between the central and terminal protons and a rotational diffusion of those anions to occur in the high-temperature form. The nature of the guest complexes filling the remaining cages could not be unambiguously determined. Results are compared with those obtained in recent studies on the related sodium aluminosilicate hydrosodalite system of the general formula Na6+x[Al6Si6O24] (OH)x · nH2O.  相似文献   

17.
The novel title polyvanadate(V), poly[[octa‐μ‐aqua‐dodecaaqua‐μ4‐octacosaoxidodecavanadato‐hexasodium] tetrahydrate], [Na6(H2O)20(V10O28)·4H2O]n, contains [V10O28]6− anions which lie about inversion centres and have approximate 2/m symmetry and which are linked to [Na3(H2O)10]3+ cations through two terminal and two μ2‐bridging O atoms. The structure contains three inequivalent Na+ cations, two of which form [Na2(H2O)8]n chains, which are linked via NaO6 octahedra involving the third Na+ ion, thus forming a three‐dimensional framework.  相似文献   

18.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

19.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

20.
Two novel borates [(CH3)3NH][B5O6(OH)4] (I) and Na2[H2TMED][B7O9(OH)5]2 (II) have been synthesized under solvothermal conditions, and characterized by elemental analyses, FT-IR spectroscopy, and single crystal X-ray diffraction. Crystal data for I: monoclinic, P21/c, a = 9.3693(11) Å, b = 14.0375(17) Å, c = 10.0495(9) Å, β = 91.815(9)°, Z = 4. Crystal data for II: monoclinic, P21/c, a = 11.6329(2) Å, b = 11.9246(3) Å, c = 10.2528(2) Å, β = 100.178(2)°, Z = 4. Their crystal structures both have 3D supramolecular framework with large channels constructed by O–H···O hydrogen-bonding among the polyanions of [B5O6(OH)4]? or [B7O9(OH)5]2? clusters. The templating organic amines cations in I and II are both located in the channels of 3D supramolecular frameworks, respectively, and interact with the polyborate frameworks both electrostatically and via hydrogen bonds of N–H···O. Na2[H2TMED][B7O9(OH)5]2 is the first example of heptaborate co-templated by alkali metal and organic base, which is also rare in borates. The photoluminescence property of the synthetic sample of Na2[H2TMED][B7O9(OH)5]2 in the solid state at room temperature was also investigated by fluorescence spectrophotometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号