首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new microporous iron (III) phosphate, [H3N(CH2)4NH3]3[Fe8(HPO4)12(PO4)2(H2O)6], has been prepared using low temperature hydrothermal methods and characterized by single-crystal X-ray diffraction, EDAX, infrared spectroscopy, thermogravimetric analysis and bond valence sums. The title compound crystallizes as light pink hexagonal-shaped tabs in the centrosymmetric hexagonal space group 3¯ (No.147) with a = b = 13.495(2) Å, c = 9.396(2) Å, V = 1481.9(4) Å3 and Z = 4 with R/Rw = 0.044/0.048. The compound exhibits a complicated three-dimensional microporous structure with quaternary ammonium ions acting as a template for the framework. It is similar to previously reported [HN(CH2CH2)3NH]3[Fe8(HPO4)12(PO4)2(H2O)6].  相似文献   

2.
In the system ZnO/H3PO4/H2O/1,4‐diazacycloheptane (C5H12N2), a new zincophosphate (ZnPO), (C5H14N2)[Zn3(HPO4)4] ( I ), was prepared by hydrothermal transformation (180 °C) of the known ZnPO hydrate (C5H14N2)[Zn2(HPO4)3]·H2O ( II ). The thermally‐induced transformation is reversible; upon keeping the heterogeneous mixture of I and mother liquor at 80 °C recrystallization of II was observed. Single‐crystal X‐ray crystallography revealed that I possesses a unique three‐dimensional (3D) open‐framework structure built from corner‐linked ZnO4 and HPO4 tetrahedra. The (3,4)‐connected framework of I differs considerably from the 3D open‐framework ZnPO structure of II . Crystal data for I : Monoclinic system, space group Cc (No. 9) , Z = 4, a = 9.1389(6), b = 23.627(2), c = 9.3073(6) Å, β = 109.463(7)°, T = 298 K.  相似文献   

3.
By adding piperazine to a hydrofluoric and phosphoric acid solution of Manganese(III) fluoride, the fluoride phosphate (pipzH2)[MnF2(HPO4)(H2O)](H2PO4) can be crystallized. Its structure is built by piperazinium(2+) cations, (H2PO4)? anions, and an anionic double‐chain of [HPO4] tetrahedra and [MnO3F2(H2O)] octahedra. The structure is triclinic, space group P , Z = 2, a = 622.97(4), b = 923.46(6), c = 1183.62(7) pm, α = 98.343(6)°, β = 100.747(7)°, γ = 107.642(5)°, R = 0.0289. It is worth noting that a ferrodistortive Jahn‐Teller order is observed with [MnO3F2(H2O)] octahedra strongly elongated along the F–Mn–OH2 axes perpendicular to the chain plane. The structure is stabilized by very strong hydrogen bonds.  相似文献   

4.
AgCo3PO4(HPO4)2     
The structure of the hydro­thermally synthesized compound AgCo3PO4(HPO4)2, silver tricobalt phosphate bis­(hydrogen phosphate), consists of edge‐sharing CoO6 chains linked together by the phosphate groups and hydrogen bonds. The three‐dimensional framework delimits two types of tunnels which accommodate Ag+ cations and OH groups. The title compound is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Co or Mn, and X = P or As) of the alluaudite structure type.  相似文献   

5.
Single crystals of potassium iron hydrogen phosphate, KFe3(HPO4)2(H2PO4)6 · 4 H2O, were prepared hydrothermally by heating a mixture of Fe2O3, H3PO4 and K2CO3 with a small amount of water. It crystallizes monoclinic, space group C2/c (N° 15 Int. Tab.) with Z = 4 and a = 1701(2), b = 960.4(5), c = 1750(1) pm, β = 90.88(7)°. The crystal structure was solved by using 1716 unique reflections F0 > 4σ(F0) with a final wR2 value of 0.126 (SHELXL-93). The main feature of the crystal structure are layers formed by PO4-tetrahedra around the FeO6-octahedra parallel to (001). K+ and H2O molecules connect these layers. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), Charge Distribution (CHARDI) and the Madelung Part of Lattice Energy (MAPLE) are calculated for the title compound. The existence of hydrogen bonds is confirmed by these calculations.  相似文献   

6.
The non-centrosymmetric microporous fluorinated iron phosphate, (H3O)2[Fe4(H2O)2F4(PO4)2(HPO4)2](H2O), is endowed with properties. In fact, the thermogravimetric analysis study shows a mass loss evolution as a temperature function. The optical study was also examined by UV–vis absorption. The magnetic results reveal the appearance of a ferromagnetic behavior at low temperature (Tc = 11.64 K).  相似文献   

7.
《Microporous Materials》1997,8(3-4):103-112
Fe4F3(PO4)(HPO4)4(H2O)4(N2C3H12) (labelled ULM-15) was prepared hydrothermally (7 days, 453 K, autogenous pressure) in the presence of 1,3-diaminopropane as organic template. Its structure was determined by single crystal X-ray diffraction. ULM-15 is monoclinic (Space group C2/c (no 15)) with lattice parameters a = 24.176(1) , b = 14.558(1) , c = 7.186(1) , β = 102.3(1)°, V = 2470.8(3) 3, Z = 4. Its three-dimensional framework is constituted from corner-sharing FeX6 (X = O, F, H2O) octahedra and tetrahedral PO4 and HPO4 groups. The structure presents trans-chains of FeO4F2 octahedra related to ferric dimers [Fe2O8F2(H2O)2] by tetrahedral units. They delimit 16-membered rings channels along [001] in which the diprotonated amines are inserted. ULM-15 shows 3D antiferromagnetic behaviour below TN ≈ 22 K.  相似文献   

8.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

9.
A new compound, [Co(H2O)6][{Co2(H2O)6}{Co(H2PO4)2}{(PO4)6(HPO4)18(Mo16O32)Co16(H2O)18}] · 23H2O (1), has been prepared under mild hydrothermal conditions and structurally characterized by elemental analyses, i.r. spectrum, XPS spectrum and single-crystal X-ray diffraction. Compound (1) consists of [(Mo16O32)Co16- (H2O)18(PO4)6(HPO4)18] wheel-shape clusters as the structural motif, which are covalently linked by [Co2(H2O)6] and [Co(H2PO4)2] fragments to form a two-dimensional layer framework. It is the first time that such wheels have been linked by both mononuclear and dimeric CoII octahedra. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

10.
Dicaesium divanadium trioxide phosphate hydrogenphosphate, Cs2V2O3(PO4)(HPO4), (I), and dicaesium tris[oxidovanadate(IV)] hydrogenphosphate dihydrate, Cs2[(VO)3(HPO4)4(H2O)]·H2O, (II), crystallize in the monoclinic system with all atoms in general positions. The structures of the two compounds are built up from VO6 octahedra and PO4 tetrahedra. In (I), infinite chains of corner‐sharing VO6 octahedra are connected to V2O10 dimers by phosphate and hydrogenphosphate groups, while in (II) three vanadium octahedra share vertices leading to V3O15(H2O) trimers separated by hydrogenphosphate groups. Both structures show three‐dimensional frameworks with tunnels in which Cs+ cations are located.  相似文献   

11.
Octacalcium phosphate(OCP), Ca8(HPO4)2(PO4)4·5H2O, consists of alternative stackings of layers with an apatitic structure and a brushite-like composition. Here we consider whether or not OCP is able to complex with organic substances. The interplanar spacing (d100) of OCP prepared in the presence of dicarboxylates (RC2O4 2–; R=organic group) expanded from the original value of 18.7 Å to 19.2–26.1 Å depending on the length of R. Examples of R were CnH2n(n=1–6), CH(CH3)CH2, C(CH3)=CH, CH=CH, CH2CH=CHCH2 and C6H4. Structural considerations and experimental data suggested that dicarboxylates were incorporated into the OCP structure through the replacement of HPO4 2– by RC2O4 2–.  相似文献   

12.
Two new mixed‐valence iron phosphates, namely heptairon pentaphosphate hydrogen phosphate, Fe6.67(PO4)5.35(HPO4)0.65, and heptairon tetraphosphate bis(hydrogen phosphate), Fe6.23(PO4)4.45(HPO4)1.55, have been synthesized hydrothermally at 973 K and 0.1 GPa. The structures are similar to that of FeII3FeIII4(PO4)6 and are characterized by infinite chains of Fe polyhedra parallel to the [101] direction. These chains are formed by the Fe1O6 and Fe2O6 octahedra, alternating with the Fe4O5 distorted pentagonal bipyramids, according to the stacking sequence ...Fe1–Fe1–Fe4–Fe2–Fe2.... The Fe3O6 octahedra and PO4 tetrahedra connect the chains together. FeII is localized on the Fe3 and Fe4 sites, whereas FeIII is found in the Fe1 and Fe2 sites, according to bond‐valence calculations. Refined site occupancies indicate the presence of vacancies on the Fe4 site, explained by the substitution mechanism FeII + 2(PO43−) = vacancies + 2(HPO42−).  相似文献   

13.
New compounds, Sr2Ga(HPO4)(PO4)F2 and Sr2Fe2(HPO4)(PO4)2F2, have been prepared by hydrothermal synthesis (700°C, 180 MPa, 24 h) and characterized by single-crystal X-ray diffraction. Sr2Ga(HPO4)(PO4)F2 crystallizes in the monoclinic space group P21/n with a = 8.257(1) Å, b = 7.205(1) Å, c = 13.596(2) Å, β = 108.02(1)°, V = 769.2(2) Å3 and Z = 4 and Sr2Fe2(HPO4)(PO4)2F2 in the triclinic space group P21/n with a = 8.072(1) Å, b = 8.794(1) Å, c = 8.885(1) Å, α = 102.46(1)°, β = 115.95(1)°, γ = 89.95(1)°, V = 550.6(1) Å3 and Z = 2. Structures are both based on different sheets involving corner-linkage between octahedra and tetrahedra. The sheets are linked by Sr2+ cations. Structural relationships exist between the descloizite mineral and the title compounds.  相似文献   

14.
A new zero-dimensional (0D) aluminophosphate monomer [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en)3Cl3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO4)2(H1.5PO4)2(H2PO4)2]6? monomer. Notably, there exists intramolecular symmetrical O?H?O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4, M = 1476.33, monoclinic, C2/c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å3, Z = 4, R1 = 0.0509 (I > 2σ(I)) and wR2 = 0.1074 (all data). CCDC number 689491.  相似文献   

15.
The hybrid 2D compound [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1), has been investigated due to its interesting magnetic and catalytic properties. Compound (1) acts as an efficient catalyst in the epoxidation of cyclohexene and styrene. The chemoselectivity towards the epoxidation of cyclohexene is notoriously higher than the one observed towards styrene. The bulk antiferromagnetic behaviour of [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1) can be well described with a pentanuclear model, using five J values. Both antiferromagnetic and ferromagnetic interactions mediated by phosphate bridges are found to be present in this hybrid copper(II)–vanadium(IV) material.  相似文献   

16.
Germanophosphates, as a young class of metal phosphates, have been less reported but might possess more diverse structural types and potential applications. Here, two one‐dimensional (1D) alkali‐metal germanophosphates (GePOs), namely, hydrogen hexakis(μ‐hydrogen phosphato)digermaniumtrirubidium, HRb3Ge2(HPO4)6 ( 1 ), and caesium bis(μ‐hydrogen phosphato)(μ‐hydroxido)germanium, CsGe(HPO4)2(OH) ( 2 ), have been prepared by the solvothermal method. Compound 1 shows 1D [Ge(HPO4)6] chains along the c axis formed by GeO6 octahedra and PO4 tetrahedra, with Rb+ cations dissociated between the chains. Compound 2 also exhibits 1D [Ge(HPO4)4(OH)2] chains constructed from adjacent Ge(HPO4)4(OH)2 octahedra, with Cs+ cations dissociated between the chains. XRD, TGA, IR and UV–Vis–NIR absorption spectra are presented and discussed for both compounds.  相似文献   

17.
The two‐dimensional zinc phosphate [H3N(CH2)3NH3]0.5[Zn2(PO4)(HPO4)], has been synthesized hydrothermally using 1,3‐diaminopropane as the template. Its structure contains an inorganic framework with three‐, four‐, or six‐membered rings, built from PO4, PO3(OH) and ZnO4 tetrahedral moieties sharing vertexes. The protonated 1,3‐diaminopropane molecules interact with the framework through hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A new iron hydrogen phosphate, heptairon bis­(phosphate) tetrakis­(hydrogen­phosphate), Fe7(PO4)2(HPO4)4, has been prepared hydro­thermally and characterized by single‐crystal X‐ray diffraction. The compound has one Fe atom on an inversion centre and is isostructural with Mn7(PO4)2(HPO4)4 and Co7(PO4)2(HPO4)4. The structure is based on a framework of edge‐ and corner‐sharing FeO6, Fe5 and PO4 polyhedra, isotypic with that found in the mixed‐valence iron phosphate Fe7(PO4)6. The Fe atoms in the title compound are purely in the divalent state, just like the Co atoms in Co7(PO4)2(HPO4)4, the necessary charge balance being maintained by the addition of H atoms in the form of bridging Fe—OH—P groups.  相似文献   

19.
A new open-framework compound, [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O, (DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH22+ (C6H14N22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO7 units. [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P21/n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2σ(I).  相似文献   

20.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号