首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New 1-deazapurine nucleosides were synthesized by coupling 2,6-dichloro-1-deaza-9H-purine (=5,7-dichloro-3H-imidazo[4,5-b]pyridine) with a 3-deoxyribose derivative by the acid-catalyzed fusion method. The condensation reaction gave an anomeric mixture of the N9-β-D - and N9-α-D -3′-deoxynucleosides, which were treated with methanolic ammonia at room temperature to obtain the deprotected derivatives. Reaction of the β-D -anomer with different amines gave 2-chloro-N6-substituted nucleosides, which were dechlorinated to give the corresponding 3′-deoxy-1-deazaadenosines. Biological studies on adenosine deaminase from calf intestine showed that the new compounds are inhibitors of the enzyme, the 3′-deoxy-1-deazaadenosine being the most potent one with a Ki of 2.6 μM .  相似文献   

2.
3.
Solid-liquid phase-transfer glycosylation (KOH, tris[2-(2-methoxyethoxy)ethye]amine ( = TDA-1), MeCN) of pyrrolo[2,3-d]pyrimidines such as 3a and 3b with an equimolar amount of 5-O-[(1,1 -dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribofuranosyl chloride (1) [6] gave the protected β-D -nucleosides 4a and 4b , respectively, stereoselectively (Scheme). The β-D -anomer 2 [6] yielded the corresponding α-D -nucleosides 5a and 5b with traces of the β-D -compounds. The 6-substituted 7-deazapurine nucleosides 6a , 7a , and 8 were converted into tubercidin (10) or its α-D -anomer (11) . Spin-lattice relaxation measurements of anomeric ribonucleosides revealed that T1 values of H? C(8) in the α-D -series are significantly increased compared to H? C(8) in the β-D -series while the opposite is true for T1 of H? C(1′). 15N-NMR data of 6-substituted 7-deazapurine D -ribofuranosides were assigned and compared with those of 2′-deoxy compounds. Furthermore, it was shown that 7-deaza-2′deoxyadenosine ( = 2′-deoxytubercidin; 12 ) is protonated at N(1), whereas the protonation site of 7-deaza-2′-deoxyguanosine ( 20 ) is N(3).  相似文献   

4.
The conformation of the 7-bromo- and 7-iodo-substituted 8-aza-7-deazapurine nucleosides 1 and 2 in the solid state and in aqueous solution was studied by single-crystal X-ray analyses and by 1H-NMR spectroscopy. In the solid state, both compounds display a high-anti conformation around the glycosylic bond, and their 2′-deoxy-β-D -ribofuranose moieties adopt an N-type sugar puckering. The orientation of the exocyclic C(4′)−C(5′) bond was found to be ap in both cases. In D2O solution, both compounds display i) an 8 – 10% higher N-conformer population than 2′-deoxyguanosine and ii) a preference of the −sc conformation about the C(4′)−C(5′) bond. A comparative study on the influence of modified bases on the sugar structure of nucleosides is made.  相似文献   

5.
The convergent syntheses of 3-deazapurine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides, including 3-deaza-2′-deoxyadenosine ( 1a ) and 3-deaza-2′,3′-dideoxyadenosine ( 1b ) is described. The 4-chloro-lH-imidazo[4,5-c]pyridinyl anion derived from 5 was reacted with either 2′-deoxyhalogenose 6 or 2′,3′-dideoxyhalogenose 10 yielding two regioisomeric (N1 and N3) glycosylation products. They were deprotected and converted into 4-substituted imidazo[4,5-c]pyridine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides. Compounds 1a and 1b proved to be more stable against proton-catalyzed N-glycosylic bond hydrolysis than the parent purine nucleosides and were not deaminated by adenosine deaminase.  相似文献   

6.
Heterylation of 3-R1-5-R2-1'2'4-triazoles (pK a 3-12) with N-alkyl-, N-alkenyl-, N-alkoxy-carbonyl-, N-oxoalkyl-, N-nitroxyalkyl, N-nitroaminoalkyl-3'5-dinitro-1'2'4-triazoles results insubstitution of a nitro group in 5 position of the dinitro compound yielding 1-R-methyl-3-nitro-5-(3-R1-5-R2-1,2,4-triazolyl)-1,2,4-triazoles. The side processes: Hydroxide-ion attack on C5 and (or) N1 of the ring both in the substrate and in the target compound afford 1-R-methyl3-nitro-1,2,4-triazol-5-ones, 3,5-dinitro-1,2,4-triazole and NH-acids of N-C-bitriazole series. Optimal reaction media are aprotic dipolar substances, and for compounds prone to heterolysis ethyl acetate-water systems. The azole pK a is the decisive factor controlling the composition and the ratio of reaction products. The process is promising for azoles with pK a > 5, and the optimal range of pK a is 8-10.  相似文献   

7.
Mononuclear O,O-coordinated complexes K2(MLCl2) M = Zn(II), Cd(II) and dinuclear complexes (MZnLCl2R2)x along with dinuclear N,N-coordinated complexes (M′ZnH2LCl2R2)y (where M = Zn(II), Cd(II), Hg(II) and M′ = M and Sn(IV); R = Cl, CH3; x = 0, ?2; y = 0, +2) of N′-1-,N′-2-dihydroxy-N-1-,N-2-dipyridin-2-ylethanedimidamide (H2L) have been prepared. All complexes have been characterized by 1H NMR, IR, EI-mass spectroscopy and elemental microanalysis. These results are in agreement with our prediction for structures of mono and dinuclear complexes of H2L and L?2 with Zn(II) in the gas phase by theoretical studies.  相似文献   

8.
The base-pairing properties of N7-(2-deoxy-β-D -erythro-pentofuranosyl)guanine (N7Gd; 1 ) are investigated. The nucleoside 1 was obtained by nucleobase-anion glycosylation. The glycosylation reaction of various 6-alkoxy-purin-2-amines 3a - i with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 8 ) was studied. The N9/N7-glycosylation ratio was found to be 1:1 when 6-isopropoxypurin-2-amine ( 3d ) was used, whereas 6-(2-methoxyethoxy)purin-2-arnine ( 3i ) gave mainly the N9-nucleoside (2:1). Oligonucleotides containing compound 1 were prepared by solid-phase synthesis and hybridized with complementary strands having the four conventional nucleosides located opposite to N7Gd. According to Tm values and enthalpy data of duplex formation, a base pair between N7Gd and dG is suggested. From the possible N7Gd dG base pair motives, Hoogsteen pairing can be excluded as 7-deaza-2′-deoxyguanosine forms the same stable base pair with N7Gd as dG.  相似文献   

9.
A series of novel sugar-modified derivatives of cytostatic 6-hetaryl-7-deazapurine ribonucleosides (2′-deoxy-2′-fluororibo- and 2′-deoxy-2′,2-difluororibonucleosides) bearing an aryl or hetaryl group in position 6, was prepared and screened for biological activity. The fluororibo derivatives were prepared by aqueous palladium catalyzed cross-coupling reactions of the corresponding 6-chloro-7-deazapurine 2′-deoxy-2′-fluororibonucleoside 11 with (het)arylboronic acids. The key intermediate 11 was prepared by a six-step sequence from the corresponding arabinonucleoside by selective protection of 3′- and 5′-hydroxyls by acid-labile groups followed by stereoselective SN2 fluorination and deprotection. The difluororibo-series was prepared by non-stereoselective glycosidation of 6-chloro-7-deazapurine with benzoyl-protected 2-deoxy-2,2-difluoro-d-erythro-pentofuranosyl-1-mesylate followed by cross-couplings, separation of anomers and deprotection. The title nucleosides did not show considerable cytostatic or antiviral activity.  相似文献   

10.
Four unsymmetrical vic-dioximes: [L1H2] N-(4-butylphenyl)amino-amphi-glyoxime, [L2H2] N-(4-butylphenyl)amino-anti-glyoxime, [L3H2] N-(4-phenylazophenyl)amino-amphi-glyoxime and [L4H2] N-(4-phenylazophenyl)amino-anti-glyoxime have been prepared from amphi-chloroglyoxime, anti-chloroglyoxime, 4-butylaniline and 4-(phenylazo)aniline respectively. The complexes of these vic-dioximes with NiII, CoII, CuII and CdII ions have been investigated. All are insoluble in common solvents. Their i.r. spectra and elemental analyses are given, together with mass and 1H-n.m.r. spectra of the ligands.  相似文献   

11.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

12.
A convenient and very sensitive actinometery system for UV radiation with wavelengths in the range250–310 nm is described, which is based on the fluorogenic photorearrangement of 1-deazapurine N(3)-oxide. The product, 1-deazapruin-2-one, can be estimated fluoremetrically in the presence of the N-oxide of 1-deazapurine and 1-methyl-1-deazapurine fail in the range 0.13-0.15 and do not vary significantly with wavelength. There is potential for using 1-deazupurine N(3)-oxides as UV-photoactivable fluorophores.  相似文献   

13.
Oximation of indoles having a methoxycarbonylamino group on C5 and an acyl group on C3 with hydroxylamine hydrochloride in the presence of pyridine gave the corresponding oximes. The reduction of the 3-C=O group with sodium tetrahydridoborate in the presence of sodium hydroxide was accompanied by removal of the methoxycarbonyl group at the pyrrole nitrogen atom with formation of racemic alcohols. 1,4-Addition of 1-(pyridin-3-yl)butane-1,3-dione to dimethyl 1,4-benzoquinone diimine N,N′-dicarboxylate in dioxane in the presence of sodium methoxide, followed by heating in boiling 22% hydrochloric acid, afforded methyl 2-methyl-5-(methoxycarbonylamino)-3-(pyridin-3-ylcarbonyl)-1H-indole-1-carboxylate. 3-(Dimethylamino)-1-(4-methyl-1,2,5-oxadiazol-3-yl)prop-2-en-1-one reacted with N,N′-bis(methoxycarbonyl)- and N,N′-bis(phenylsulfonyl)-1,4-benzoquinone diimines in methylene chloride and acetic acid, respectively, in the presence of BF3 · Et2O to produce indoles having a 1,2,5-oxadiazolylcarbonyl group on C3.  相似文献   

14.
This study shows that stereochemical factors largely determine the extent to which 6-(4′-t-butylphenylamino)-naphthalene-2-sulphonate, BNS and its dimer, (BNS)2, are complexed by β-cyclodextrin, βCD, and a range of linked βCD dimers. Fluorescence and 1H NMR studies, respectively, show that BNS and (BNS)2 form host–guest complexes with βCD of the stoichiometry βCD.BNS (10? 4 K 1 = 4.67 dm3 mol? 1) and βCD.BNS2 2 ?  (10? 2 K 2′ = 2.31 dm3 mol? 1), where the complexation constant K 1 = [βCD.BNS]/([βCD][BNS]) and K 2′ = [βCD. (BNS)2]/([βCD.BNS][BNS]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm3 at 298.2 K. (The dimerisation of BNS is characterised by 10? 2 K d = 2.65 dm3 mol? 1.) For N,N-bis((2AS,3AS)-3A-deoxy-3A-β-cyclodextrin)succinamide, 33βCD2su, N-((2AS,3AS)-3A-deoxy-3A-β-cyclodextrin)-N′-(6A-deoxy-6A-β-cyclodextrin)urea, 36βCD2su, N,N-bis(6A-deoxy-6A-β-cyclodextrin)succinamide, 66βCD2su, N-((2AS,3AS)-3A-deoxy-3A-β-cyclodextrin)-N′-(6A-deoxy-6A-β-cyclodextrin)urea, 36βCD2ur, and N,N-bis(6A-deoxy-6A-β-cyclodextrin)urea, 66βCD2ur, the analogous 10? 4 K 1 = 11.0, 101, 330, 29.6 and 435 dm3 mol? 1 and 10? 2 K 2′ = 2.56, 2.31, 2.59, 1.82 and 1.72 dm3 mol? 1, respectively. A similar variation occurs in K 1 derived by UV–vis methods. The factors causing the variations in K 1 and K 2 are discussed in conjunction with 1H ROESY NMR and molecular modelling studies.  相似文献   

15.
Two pentagonal bipyramidal complexes, ethanol-(S-ethyl-N1,N4-bis(3-methoxy-2-hydroxybenzaldehyde)-isothiosemicarbazide-N,N′,O,O′)-dioxidouranium(VI) (1) and ethanol-(S-ethyl-N1-(2-hydroxyacetophenone)-N4-(5-bromo-2-hydroxybenzaldehyde)-isothiosemicarbazide-N,N′,O,O′)-dioxidouranium(VI) (2), have been prepared and characterized. Their structures have been determined by X-ray crystallography, and the structural parameters are discussed with those observed in related complexes. Electronic absorption, proton magnetic resonance, and FT-IR spectra have been recorded and analyzed. In both complexes, the U(VI) centers are surrounded by N2O2 donor ligands, two oxido groups, and one ethanol in a distorted pentagonal bipyramid. The thermal stability of the new complexes has also been determined.  相似文献   

16.
Reaction of N-methylaniline with 40% glyoxal yields 1-methyl-2-(N-methyl-N-phenylglycyl)-3-(N-methylanilino)indole ( 1a ) as the main product together with 1-methyl-3-(N-methylanilino)indole ( 1b ). The reaction appears to be general for aromatic secondary amines since N-ethylaniline and N-phenylbenzylamine yield the corresponding indoles. The structure of 1a has been verified by single crystal X-ray diffraction. Compound 1a (C25H25N3O) crystallized in the triclinic space group Pl? with cell dimensions a = 10.085(3)Å, b = 10.371(3)Å, c = 11.908(5)Å, α = 74.2(3)°, β = 74.7(3)° and γ = 60.7(2)° with Z = 2. The complete 1H and 13C nmr assignment of indoles 1a and 1b was achieved from two-dimensional HETCOR and COSY spectra with the aid of homonuclear and heteronuclear double resonance experiments.  相似文献   

17.
Two acylhydrazone complexes, bis{6‐methyl‐N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O}nickel(II), [Ni(C13H12N5O)2], (I), and di‐μ‐azido‐κ4N1:N1‐bis({6‐methyl‐N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O}nickel(II)), [Cu2(C13H12N5O)2(N3)2], (II), derived from 6‐methyl‐N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL) and azide salts, have been synthesized. HL acts as an N,N′,O‐tridentate ligand in both complexes. Complex (I) crystallizes in the orthorhombic space group Pbcn and has a mononuclear structure, the azide co‐ligand is not involved in crystallization and the Ni2+ centre lies in a distorted {N4O2} octahedral coordination environment. Complex (II) crystallizes in the triclinic space group P and is a centrosymmetric binuclear complex with a crystallographically independent Cu2+ centre coordinating to three donor atoms from the deprotonated L? ligand and to two N atoms belonging to two bridging azide anions. The two‐ and one‐dimensional supramolecular structures are constructed by hydrogen‐bonding interactions in (I) and (II), respectively. The in vitro urease inhibitory evaluation revealed that complex (II) showed a better inhibitory activity, with the IC50 value being 1.32±0.4 µM. Both complexes can effectively bind to bovine serum albumin (BSA) by 1:1 binding, which was assessed via tryptophan emission–quenching measurements. The bioactivities of the two complexes towards jack bean urease were also studied by molecular docking. The effects of the metal ions and the coordination environments in the two complexes on in vitro urease inhibitory activity are preliminarily discussed.  相似文献   

18.
Reactions of Mononucleophiles with a Bromoenurononitrile, Precursor and Partial Synthetic Equivalent of an Ynurononitrile Several mononucleophiles (bases) have been reacted with one or the other of the geometrical isomers of the bromoenurononitrile 1. Depending on the nucleophile and the conditions, many different mechanistic pathways were followed, f. ex.: with OH?, stereospecific elimination from (Z)- 1 leading to 2 , with N?3 and F?, stereospecific E-AN reactions leading from (Z)- 1 to (Z)- 8 and (Z)- 12 respectively, with PhCH2SH, conjugate nucleophilic addition to 7, with Me2NH, conjugate nucleophilic addition followed by a SN2 to 11 , as well as several cases of nonstereoselective, probably AN-E, reactions leading to 3,6,9 and 10. In spite of their diversified reactivity, bromoenurononitriles like 1 , partial synthetic equivalent of 2 , constitute useful synthetic intermediates.  相似文献   

19.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

20.
Reaction of N-ethylcarbazole ( 1 ) with iodine-silver perchlorate gave a green solution having a singlet esr signal. Reduction of the solution with potassium iodide gave N,N′ -diethyl-3,3′-dicarbazolyl ( 3 , 48%). Small amounts of 3-iodo- ( 4 ) and 3,6-diiodo-N-ethylcarbazole ( 5 ) were also obtained. Compounds 4 and 5 are believed to have been formed by electrophilic iodination of 1 by I2-AgCIO4, whereas 3 appears to have been formed via the dimerization of 1 .+. In accord with this, reaction of 1 with iodine-silver nitrite gave 3-nitro-N-ethylcarbazole ( 6 , 61%), 9% of another nitro-N-ethylcarbazole ( 7 ), thought to be either 1- or 4-nitro-N-ethylcarbazole, and 28% of 4. Thus, trapping of 1 .+ by nucleophilic nitrite ion occurred even though 1 .+ is not stable enough toward isolation as the perchlorate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号