首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cis-[Mn(CO)4(TePh)2]?, similar to bidentate ligand PhTe(CH2)3TePh, acts as a “chelating metalloligand” for the synthesis of metallic tellurolate compounds. The reaction of cis[Mn(CO)4(TePh)2]? with BrMn(CO)5 in THF leads to a mixture of products[(CO)3,BrMn(μ-TePh)2Mn(CO)4]? (1) and Mn2(μ-TePh)2(CO)g (2). Complex 1 crystallizes in the triclinic space group Pl? with a = 11.309(3) Å, b = 14.780(5) Å, c = 19.212(6) Å, a = 76.05(3)° β = 72.31(3)°, γ = 70.41(3)° V = 2848(2) Å3, Z = 2. Final R = 0.034 and Rw = 0.035 resulting from refinement of 10021 total reflections with 677 parameters, Dropwise addition of (MeTe)2 to a solution of [Me3O][BF4] in CH3CN leads to formation of [Me2TeTeMe][BF4], a potential MeTe+ donor ligand. In contrast to oxidative addition of diphenyl ditelluride to [Mn(CO)s]? to give cis-[Mn(CO)4(TePh)2]? which was thermally transformed into [(CO)3Mn(μ-TePh)3Mn(CO)3]?, reaction of [Mn(CO)5]?with [Me2TeTeMe]+ proceeded to give the monomeric species MeTeMn(CO)5 as initial product which was then dimerized into Mn2(μ-TeMe)2(CO)g (4).  相似文献   

2.
Anionic iron(0) tetracarbonyl with terminal phenyltellurolate ligand PhTe?, [PhTeFe(CO)4]?, has been synthesized and characterized. The title compound was obtained by addition of (PhTe)2 to [PPN][HFe(CO)4] THF solution dropwise. [PPN][PhTeFe(CO)4] crystallizes in the monoclinic space group C c, with a = 16.119(4) Å, b = 13.141(3) Å, c = 19.880(8) Å, β = 93.04(3)°, V = 4205(2) Å3, and Z = 4. The [PhTeFe(CO)4]? anion is a trigonal-bipyramidal complex in which the phenyltellurolate ligand occupies an axial position with Fe-Te bond length 2.630(5) Å and the Fe-Te-C(Ph) angle is 103.4(5)°. The neutral iron(0)-telluroether compound, (PhTeMe)Fe(CO)4, was prepared by alkylation of the [PhTeFe(CO)4]?. Protonation of [PhTeFe(CO)4]?and reaction of H2Fe(CO)4 and PhTe)2 ultimately lead to formation of the known dimer Fe2(μ-TePh)2(CO)6 and H2.  相似文献   

3.
Addition of NOBF4 to fac-[PPN][Fe(CO)3(TePh)3] in THF at ambient temperature results in formation of Fe2(μ-TePh)2(NO)4l Fe2(?TePh)2(CO)6 and organic products. Methylation of fac-[PPN][Fe(CO)3- (TePh)3] by Mel or [Me3O][BF4] leads to the known dimer Fe2(μ.-TePh)2(CO)6 and organic products. Fe2(μ-TePh)2(NO)4 crystallizes in the orthorhombic space group P bca, with a = 12.701(5) Å, b = 6.7935(16) Å, c = 21.299(9) Å, V = 1837.8(11) Å3, and Z = 4. The core geometry of Fe2(μ-TePh)2(NO)4 is best described as a Fe2Te2 planar rhombus with Te-Fe-Te bond angle 112.09(4)°. A Fe-Fe bond (length 2.827(2) Å) is proposed for Fe2(μ-TePh)2(NO)4 on the basis of the 18-electron rule. The iron atom adopts a distorted tetrahedral geometry with acute bridge Fe-Te-Fe angles 67.91(3)°, and bridging Fe-Te bond of length 2.53(1) Å.  相似文献   

4.
Diphenyldichalcogenides (PhE)2 (E = Te, Se) react with Fe(0)-phenylchalcogenolate [PPN] [PhEFe(CO)4] to yield the products of oxidative addition, Fe(II)-mixed-phenylchalcogenolate fac- [PPN][Fe(CO)3(TePh)n(ScPh)3-n] (n = 1, 2). Reactions of [PPN][REFe(CO)4] (E=Se, R=Me; E=S, R=Et) and diphenyldichalcogenides yielded ligand-exchange products [PPN][PhEFe(CO)4] (E=Te, Se, S). The compounds [Fe(CO)3(TePh)(ScPh)2]? (l) and [Fe(CO)3(TePh)2 (2) crystallize in the isomorphous monoclinic space group C2/e, with a = 32.035(8), b = 11.708(6), c = 28.909(6) Å, Z = 8, R = 0.048, and Rw = 0.044 (1); with a = 32.089(5), b= 11.745(2), c = 28.990(8) Å, Z = 8, R = 0.048, and Rw = 0.048 (2). The complexes 1 and 2 crystallize as discrete cations of PPN+ and anions of [Fe(CO)3(TcPh)u(ScPh)3-n] (n=1, 2), and one half solvent molecule THF. The geometry around Fe(II) is a distorted octahedron with three carbonyl groups and three phenylchalcogenolate ligands occupying facial positions.  相似文献   

5.
The anionic [MeSeFe(CO)4] and [MeSeCr(CO)5] complexes were synthesized by reaction of [PPN][HFe(CO)4] and [PPN][HCr(CO)5] with MeSeSeMe respectively via nucleophilic cleavage of the Se-Se bond. The ease of cleavage of the Se-Se bond follows the nucleophilic strength of metal-hydride complexes. Methylation of [RSeCr(CO)5?] by the soft alkylating agent MeI resulted in the formation of neutral (MeSeMe)Cr(CO)5 in THF at 0°C. In contrast, the [ICr(CO)5?] was isolated at ambient temperature. Reaction of [MeSeFe(CO)4?] or [MeSeCr(CO)5?] with HBF4 yielded (CO)3Fc(μ-SeMe)2Fe(CO)3 dimer and anionic [(CO )5Cr (μ-SeMe)Cr(CO)5?] respectively, and no neutral (HSeMe)Fe(CO)4 and (HSeMe)Cr(CO)5 were detected spectrally (IR) even at low temperature. Reaction of NOBF4 or [Ph3C][BF4] and [MeSeCr(CO)5?] resulted in the neutral monodentate (MeSeSeMe)Cr(CO)5 complex. Addition of 1 equiv CpFe(CO)2I to 2 equiv [MeSeCr(CO)5?] gave CpFe(CO)2(SeMe) and the anionic [(CO)5Cr(μ-SeMe)Cr(CO)5?] in THF at ambient temperature.  相似文献   

6.
Whereas reaction of [PhCH2NMe3]2|Te6Fe8(CO)24] (1) in refluxing CH2CI2 forms Fe2(CO)6(μ0-) TeCH2Te), treatment of 1 with Ph2SnCl 2 or Mel gave the oxidation product Te2Fe3(CO)9. Oxidation of 1 with [Cu(CH3CN)4]BF4 afforded Te2Fe3(CO)9 in good yield. Cluster 1 was converted to [PhCH2NMe3][Te4Fe5(CO)14] (2) in MeOH/CH2Cl2 solution. Cluster 2 was structurally characterized by single-crystal X-ray diffraction and spectral methods. Complex 2 is composed of two Te2Fe2(CO)6 fragments linked by one Fe(CO)2 group. 2 crystallizes in the orthorhombic space group Pbcn with a = 13.351 (4) Å, b = 13.417 (4) Å, c = 26.077 (3) Å, V = 4671 (2) Å 3, Z = 4.  相似文献   

7.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

8.
Reactions in the gas phase of the 13- and 15-electron radical anions [Cr(CO)3]? ˙ and [Cr(CO)4]? ˙ with a series of 27 aldehydes, ketones, esters and ethers have been examined. Sequential alkane eliminations and metal-bonded CO ligand displacements were the principal reactions identified for the RCHO/[Cr(CO)3]? ˙ systems with the latter reaction also common to the RCHO/[Cr(CO)4]? ˙ systems. While [Cr(CO)4]? ˙ was generally unreactive towards ketones R · R'CO, the principal products identified for [Cr(CO)3]? ˙/ketone reactions were the metal-decarbonylated species, respectively [R · R'CO · Cr(CO)x]? ˙ with x = 0–3, and [R · (R' - H2)CO · Cr(CO)2]? ˙. The reaction of [Cr(CO)3]? ˙ with esters RCOOR' proceeds via metal insertion into the alkoxy C? O bond to give end products of the type [R'O · Cr · R(CO)2]? and [R'O? Cr(CO)3]? while the sole ionic products of dialkyl ether/[Cr(CO)3]? ˙ reactions were identified as the alkoxytricarbonylchromium species [RO · Cr(CO)3]?.  相似文献   

9.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

10.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

11.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of the Linkage Isomeric Chlororhodanoiridates(III) trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? By treatment of Na2[IrCl6] with NaSCN in 2N HCl the linkage isomers trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations on single crystals of trans-(n-Bu4N)3[IrCl2(SCN)4] ( 1 ) (monoclinic, space group P21/a, a = 18.009(4), b = 15.176(3), c = 23.451(4) Å, β = 93.97(2)°, Z = 4) and trans-(Me4N)3[IrCl2(NCS)(SCN)3] ( 2 ) (monoclinic, space group P21/a, a = 17.146(5), b = 9.583(5), c = 18.516(5) Å, β = 109.227(5)°, Z = 4) reveal the complete ordering of the complex anions. The via S or N coordinated thiocyanate groups are bonded with Ir? S? C angles of 105.7–109.7° and the Ir? N? C angle of 171.4°. The torsion angles Cl? Ir? S? C and N? Ir? S? C are 3.6–53.0°. The IR and Raman spectra of ( 1 ) are assigned by normal coordinate analysis using the molecular parameters of the X-ray determination. The valence force constants are fd(IrS) = 1.52 and fd(IrCl) = 1.72 mdyn/Å.  相似文献   

12.
Further investigation of the reaction of Ar*GaCl2 (Ar* = 2,4,6-t-Bu3C6H2) with Na[Mn(CO)5] resulted in the new compound, [Ga(Ar*){Mn(CO)5}2] 2 . The new indium compounds, [In(Ar*){Co(CO)4}2] 3 and [In(Ar*){Mn(CO)5}2] 4 , have been prepared by the treatment of Ar*InBr2 with Na[Co(CO)4] and Na[Mn(CO)5], respectively. The structure of 3 was established by single-crystal X-ray diffraction: space group P1 (No. 2), Z = 2, a = 8.625(1) Å, b = 10.557(2) Å, c = 17.55(2) Å, α = 88.43(1)°, β = 83.45(1)°, γ = 71.14(1)°. The X-ray crystal structure of [Ga{Mn(CO)5}3] is also reported: space group Pbca (No. 61), Z = 8, a = 12.83(3) Å, b = 11.753(2) Å, c = 29.662(6) Å, α = β = γ = 90°.  相似文献   

13.
Crystal structures of a series of manganese(I) complexes containing tripodal ligands were determined. For [η3-{CH3C(CH2PPh2)2(CH2SPh)-P,P′,S}Mn(CO)3]PF6 ( 1 ): a = 10.856(3) Å, b = 19.698(3) Å, c = 17.596(5) Å, β = 96.17(2)°, monoclinic, Z = 4, P21/c, R(Fo) = 0.068, Rw(Fo) = 0.055 for 3617 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)(CH2SPh)2-P,P′,S}Mn(CO)3]PF6 ( 2 ): a = 9.890(2) Å, b = 20.403(4) Å, c = 10.269(3) Å, β = 117.44(2)°, monoclinic, Z = 2, P2l, R(Fo) = 0.050, Rw(Fo) = 0.037 for 1760 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)2(CH2S)-P,P′,S}Mn(CO)3] ( 4 ): a = 8.191(7) Å, b = 10.495(3) Å, c = 19.858(6) Å, α = 99.61(2)°, β = 96.17(2)°, γ = 92.70(4)°, triclinic, Z = 2, P-I, R(Fo) = 0.048, Rw(Fo) = 0.039 for 2973 reflections with Io > 2σ(Io). There is no significant difference in the bond lengths of Mn-S bonds among three species in their crystal structures [2.325(2) Å in 1; 2.358(4) in 2; 2.380(2) in 4], but the better donating ability of thiolate in complex 4 appears on the lower frequencies of its carbonyl stretching absorptions.  相似文献   

14.
Single Crystal X-Ray Analysis of Compounds with Covalent Metal–Metal Bonds. II. Molecular and Crystal Structure of X2Sn[Mn(CO)5]2 (X?Cl, Br) Both X2Sn[Mn(CO)5]2 compounds (X?Cl, Br) crystallize in the monoclinic crystal system with at times different values in the lattice parameters. They belong to the space group C2h5. The structures have been solved using 2 107 symmetrical independent reflection for Cl2Sn[Mn(CO)5]2 and 1 470 reflections for Br2Sn[Mn(CO)5)2] by applying the heavy atom method. The following interatomic distances have been found: Cl2Sn[Mn(CO)5]2, Sn? Mn = 2.635(1) Å, Sn? Cl = 2.385(2) Å, Mn? C = 1.852(8) Å, C? O = 1.128(10) Å; Br2Sn[Mn(CO)5]2, Sn? Mn = 2.642(3) Å, Sn? Br = 2.548(2) Å, Mn? C = 1.851(21) Å, C? O = 1.124(25) Å. In addition, bond angles of X? Sn? X and Mn? Sn? Mn of these compounds have also been estimated in the case of X = Cl: 95.80(7)° and 126.25(4)° and for X?Br: 98.44(8)° and 125.88(9)°. The individual molecules of the X2Sn[Mn(CO)5]2 solids are surrounded by ligands showing distorted tetrahedral configuration at the Sn atom and distorted octahedral configuration at the Mn atom.  相似文献   

15.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

16.
The reaction of PPh2Cl with orthomanganated acetophenone, 2′-CH3C(O)C6H4Mn(CO)4, gives Mn2(μ-η11-Ph2PPPh2)(μ-Cl)2(CO)6. An X-ray structure determination [triclinic, space group P1 , a = 10.908(4) Å, b = 11.756(3) Å, c = 12.186(3) Å, α = 96.20(2)°, β = 99.51(2)°, γ = 96.52(2)°] shows two Mn(CO)3 groups held together by two bridging Cl ligands, and further bridged by a Ph2P? PPh2 group prepared in situ.  相似文献   

17.
Two special manganese complexes [Mn(II)(acac?)2(4,4′‐bipy)]n (bipy=4,4′‐bipyridine) (complex 1 ) and [Mn(III)(acac?)3]·4CO(NH2)2 (acacH=acetylacetone) (complex 2 ) were synthesized in the same strategy by solvothermal method. Single crystal X‐ray diffraction revealed the complex 1 consists of one‐dimensional infinite coordination chain, with the manganese centers bridged by 4,4′‐bipy. And free carbamides of complex 2 connect with each other through the hydrogen bonds to form a 14‐membered carbamide ring and a zig‐zag plane. Both enantiomers of Mn(III)(acac?)3 exist in the structure, forming a racemate. Furthermore, these enantiomers and those zig‐zag planes are linked with hydrogen bonds to form an unique spatial network.  相似文献   

18.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

19.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

20.
The co‐adsorption of O2 and CO on anionic sites of gold species is considered as a crucial step in the catalytic CO oxidation on gold catalysts. In this regard, the [Au2O2(CO)n]? (n=2–6) complexes were prepared by using a laser vaporization supersonic ion source and were studied by using infrared photodissociation spectroscopy in the gas phase. All the [Au2O2(CO)n]? (n=2–6) complexes were characterized to have a core structure involving one CO and one O2 molecule co‐adsorbed on Au2? with the other CO molecules physically tagged around. The CO stretching frequency of the [Au2O2(CO)]? core ion is observed around =2032–2042 cm?1, which is about 200 cm?1 higher than that in [Au2(CO)2]?. This frequency difference and the analyses based on density functional calculations provide direct evidence for the synergy effect of the chemically adsorbed O2 and CO. The low lying structures with carbonate group were not observed experimentally because of high formation barriers. The structures and the stability (i.e., the inertness in a sense) of the co‐adsorbed O2 and CO on Au2? may have relevance to the elementary reaction steps on real gold catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号