首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of LnCl3(thf) x (Ln = Y, La, Yb, Lu) with NaCpPhn (CpPhn = 1,3-Ph2C5H3, 1,2,4-Ph3C5H2, Ph4C5H) leads to formation of monocyclopentadienyl dichloride complexes Yb(Ph2C5H3)Cl2(thf)3 (1), Ln(Ph3C5H2)Cl2(thf)3 (Ln = Y (2), Lu (3)), La(Ph4C5H)Cl2(thf)3 (4). Molecular structures of 1, 2 and the polynuclear complex [(Ph3C5H2)3Lu4(Cl)7(O)(thf)3] (5), which is a partial hydrolysis product of 3, have been established by the X-ray method.  相似文献   

2.
Unique outcomes have emerged from the redox transmetallation/ protolysis (RTP) reactions of europium metal with [Ag(C6F5)(py)] (py=pyridine) and pyrazoles (RR′pzH). In pyridine, a solvent not normally used for RTP reactions, the products were mainly EuII complexes, [Eu(RR′pz)2(py)4] (RR′pz=3,5-diphenylpyrazolate (Ph2pz) 1 ; 3-(2-thienyl)-5-trifluoromethylpyrazolate (ttfpz) 2 ; 3-methyl-5-phenylpyrazolate (PhMepz) 3 ). However, use of 3,5-di-tert-butylpyrazole (tBu2pzH) gave trivalent [Eu(tBu2pz)3(py)2] 4 , whereas the bulkier N,N′-bis(2,6-difluorophenyl)formamidine (DFFormH) gave divalent [Eu(DFForm)2(py)3] 5 . In tetrahydrofuran (thf), the usual solvent for RTP reactions, C−F activation was observed for the first time with [Ag(C6F5)(py)] in such reactions. Thus trivalent [{Eu2(Ph2pz)4(py)4(thf)2(μ-F)2}{Eu2(Ph2pz)4(py)2(thf)4(μ-F)2}] ( 6 ), [Eu2(ttfpz)4(py)2(dme)2(μ-F)2] ( 7 ), [Eu2(tBu2pz)4(dme)2(μ-F)2] ( 8 ) were obtained from the appropriate pyrazoles, the last two after crystallization from 1,2-dimethoxyethane (dme). Surprisingly 3,5-dimethylpyrazole (Me2pzH) gave the divalent cage [Eu6(Me2pz)10(thf)6(μ-F)2] ( 9 ). This has a compact ovoid core held together by bridging fluoride, thf, and pyrazolate ligands, the last including the rare μ4-1η5(N2C3): 2η2(N,N′): 3κ(N): 4κ(N′) pyrazolate binding mode. With the bulky N,N′-bis(2,6-diisopropylphenyl)formamidine (DippFormH), which often favours C−F activation in RTP reactions, neither oxidation to EuIII nor C−F activation was observed and [Eu(DippForm)2(thf)2] ( 10 ) was isolated. By contrast, Eu reacted with Bi(C6F5)3 and Ph2pzH or tBu2pzH in thf without C−F activation, to give [Eu(Ph2pz)2(thf)4] ( 11 ) and [Eu(tBu2pz)3(thf)2] ( 12 ) respectively, the oxidation state outcomes corresponding to that for use of [Ag(C6F5)(py)] in pyridine.  相似文献   

3.
Organometallic Compounds of the Lanthanides. 93. Tetramethylcyclopentadienyl Complexes of Selected 4f-Elements The trichlorides of lanthanum, neodymium, samarium, and terbium react with Na(C5Me4H) in THF to yield the homoleptic complexes Ln(C5Me4H)3 [Ln = La ( 1a ), Nd ( 1b ), Sm ( 1c ), Tb ( 1d )]. On the other hand the reactions of HoCl3, TmCl3, and LuCl3 with Na(C5Me4H) result only with formation of the dicyclopentadienyl complexes (C5Me4H)2LnCl(THF) [Ln = Ho ( 2e ), Tm ( 2f ), Lu ( 2h )]. The metallocenes (C5Me4H)2Ln(THF)2 [Ln = Sm ( 3c ), Yb ( 3g )] are obtained by the reactions of LnI2 (Ln = Sm, Yb) with Na(C5Me4H). The 1H- and 13C-NMR spectra as well as the X-ray crystal structure of the triscyclopentadienyl complexes 1 a and 1 c are discussed.  相似文献   

4.
Organometallic Compounds of the Lanthanides. 133 Synthesis and Characterization of donor-functionalised ansa -Metallocenes of Yttrium, Neodymium, Samarium, Erbium, and Lutetium The reaction of Me2SiCl2 with K[C5H4tBu], Li[C5H4SiMe3] or K[C5H3tBuMe-3] followed by treatment with K[C5H4CH2CH2NMe2] yields mixed substituted dicyclopentadienyldimethylsilanes which after double deprotonation with KH afford the dipotassium salts K2[Me2Si(C5H3tBu-3)(C5H3CH2CH2NMe2-3)] ( 1 ), K2[Me2Si · (C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)] ( 2 ), and K2[Me2Si · (C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)] ( 3 ), respectively. The reaction of 1 , 2 , or 3 with LnCl3(THF)x (Ln = Y, La, Nd, Sm, Er, Lu) leads to the complexes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 4 a ), Sm ( 4 c ), Lu ( 4 e )], [Me2Si(C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 5 a ), Sm ( 5 c ), Lu ( 5 e )], and [Me2Si(C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 6 a ), Nd ( 6 b ), Sm ( 6 c ), Er ( 6 d ), Lu ( 6 e )], respectively. Alkylation of 4 a , 4 c , 5 a , and 6 b , 6 e with LiCH3, LiCH2SiMe3, and LiCH(SiMe3)2 produces the alkylmetallocenes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnR [R = CH3, Ln = Y ( 7 a ), Sm ( 7 c ); R = CH2SiMe3, Ln = Y ( 8 a )], [Me2Si(C5H3SiMe3-3) · (C5H3CH2CH2NMe2-3)]YCH3 ( 9 a ), and [Me2Si(C5H2tBu3-Me-5)(C5H3CH2CH2NMe2-3)]LnR (R = CH3, Ln = Lu ( 10 e ); R = CH2SiMe3, Ln = Lu ( 11 e ); R = CH(SiMe3)2, Ln = Nd ( 12 b ), Lu ( 12 e )], respectively. All new compounds were characterized by elemental analyses, NMR spectroscopy and mass spectrometry. The molecular structure of 6 c and 6 e was determined by single crystal X-ray structure analysis.  相似文献   

5.
Direct thermally induced reactions between rare earth metals (Ln = Y,Ce, Dy, Ho, and Er) activated by Hg metal and 3,5‐diphenylpyrazole (Ph2pzH) or 3,5‐di‐tert‐butylpyrazole (tBu2pzH) yielded either homoleptic complexes [Lnn(R2pz)3n] or a heteroleptic complex [Ln(Ph2pz)3(Ph2pzH)2] From Ph2pzH, [Ce3(Ph2pz)9], [Dy2(Ph2pz)6], [Ho2(Ph2pz)6], and [Y(Ph2pz)3(Ph2pzH)2] were isolated. The first has a bowed trinuclear Ce3 backbone with two η2 pyrazolate ligands on the terminal metal atoms and one on the middle, and bridging by both μ‐η22 and μ‐η25 ligands between the terminal and the central Ce atoms. Although both the Dy and Ho complexes are dinuclear, the former has the rare μ‐η21 bridging whilst the latter has μ‐η22 bridging. Thus the dysprosium complex is seven‐coordinate and the holmium is eight‐coordinate, in contrast to any correlation with Ln3+ ionic radii, and the series has a remarkable structural discontinuity. The heteroleptic Y complex is eight coordinate with three chelating Ph2pz and two transoid unidentate Ph2pzH ligands. From tBu2pzH, dimeric [Ln2(tBu2pz)4] (Ln = Ce, Er) were isolated and are isomorphous with eight coordinate Ln atoms ligated by two chelating terminal tBu2pz and two μ‐η22 tBu2pz donor groups. They are also isomorphous with previously reported La, Nd, Yb, and Lu complexes.  相似文献   

6.
The trichlorides of yttrium, samarium, and lutetium react with 2 equivalents of Na[C5H4 tBu] and 1 equivalent of NaBH4 to give [(η5-C5H4 tBu)2LnBH4(THF)] (Ln = Y ( 1 ), Sm ( 2 ), Lu ( 3 )) or with 2 equivalents of Na[C5Me4R] and 1 equivalent of NaBH4 to form [(η5-C5Me4R)2 · LnBH4(THF)] (R = H, Ln = Y ( 4 ), Sm ( 5 ), Lu ( 6 ); R = Me, Ln = Y ( 7 ), Sm ( 8 ), Lu ( 9 ); R = Et, Ln = Y ( 10 ), Sm ( 11 ), Lu ( 12 ); R = iPr, Ln = Y ( 13 ), Sm ( 14 ), Lu ( 15 )). The new compounds have been characterized by elemental analysis, NMR spectroscopy and mass spectrometry. The crystal structures of 8 and 10 were determined by single crystal X-ray diffraction.  相似文献   

7.
The complex [Yb(Ph2pz)3(LiOBu)]2 ( 1 ) (Ph2pz = 3,5‐diphenylpyrazolate), fortuitously obtained from reaction of Yb metal with a lithium containing sample of [SnMe3(Ph2pz)] at elevated temperatures forms a centrosymmetric butoxy‐ and pyrazolate‐bridged open box structure. Each ytterbium atom is eight coordinate with one chelating Ph2pz ligand, one μ‐η22 bridging pyrazolate, one μ‐η2(Yb):η4(Li) Ph2pz group and two bridging butoxide ligands. Each lithium atom is unsymmetrically chelated by an η2‐Ph2pz group, η4(N,C(pz)C2(Ph)) bonded by another pyazolate group, and bridged through a butoxide oxygen atom to two ytterbium atoms. The type of η4‐pyrazolate coordination is unprecedented and is the first observation of interactions to a metal by the Ph rings of the Ph2pz ligand. The complex [Li(dme)3][Eu(Ph2pz)3(dme)] ( 2 ) obtained from reaction of Eu metal with the same sample of [SnMe3(Ph2pz)] in dme at room temperature is a charged separated species with the first anionic pyrazolatolanthanoidate(II) complex in which europium is eight coordinate with three chelating Ph2pz ligands and a chelating dme.  相似文献   

8.
The homoleptic pyrazolate complexes [CeIII4(Me2pz)12] and [CeIV(Me2pz)4]2 quantitatively insert CO2 to give [CeIII4(Me2pz?CO2)12] and [CeIV(Me2pz?CO2)4], respectively (Me2pz=3,5‐dimethylpyrazolato). This process is reversible for both complexes, as observed by in situ IR and NMR spectroscopy in solution and by TGA in the solid state. By adjusting the molar ratio, one molecule of CO2 per [CeIV(Me2pz)4] complex could be inserted to give trimetallic [Ce3(Me2pz)9(Me2pz?CO2)3(thf)]. Both the cerous and ceric insertion products catalyze the formation of cyclic carbonates from epoxides and CO2 under mild conditions. In the absence of epoxide, the ceric catalyst is prone to reduction by the co‐catalyst tetra‐n‐butylammonium bromide (TBAB).  相似文献   

9.
The direct reaction of lanthanoid metals with 3,5-diphenylpyrazole (Ph2pzH) at 300 degrees C under vacuum in the presence of mercury gives the structurally characterized [Ln3(Ph2pz)9] (Ln = La or Nd), [Ln2(Ph2pz)6] (Ln = Er or Lu). Similar reactions provided heteroleptic [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er and Y). The last was obtained only from impure Ph2pzH, but was subsequently prepared by treatment of [Yb(Ph2pz)3(thf)2] with Ph2pzH. Reactions of Yb with Ph2pzH at 200 degrees C gave a poorly soluble divalent species which was converted by 1,2-dimethoxyethane into [Yb(Ph2pz)2(dme)2]. Single crystal X-ray structures established a bowed trinuclear pyrazolate-bridged structure for [Ln3(Ph2pz)9] (Ln = La or Nd), Ln...Ln...Ln being 135.94(1) degrees (La) and 137.41(1) degrees(Nd). There are two eta2-Ph2pz ligands on the terminal Ln atoms and one on the central metal with adjacent Ln atoms linked by one mu-eta2:eta2 and one mu-eta5 (to terminal Ln):eta2 pyrazolate group. Thus the terminal Ln atoms are formally nine-coordinate and the central Ln, ten-coordinate. By contrast, [Ln2(Ph2pz)6] (Ln = Er or Lu) complexes are dimeric with two terminal (eta2) and two bridging (mu-eta2:eta2) pyrazolates and eight-coordinate lanthanoids. All six heteroleptic complexes [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb) are isomorphous with three equatorial eta2-Ph2pz groups, transoid(N-Ln-N 158.18(6)-161.43(9) degrees) eta1-pyrazole ligands, and eight-coordinate Ln throughout.  相似文献   

10.
The acid–base reaction between Y(CH2SiMe3)3(thf)2 and the pyridyl‐functionalized cyclopentadienyl (Cp) ligand C5Me4H? C5H4N (1 equiv) at 0 °C afforded a mixture of two products: (η5:κ‐C5Me4? C5H4N)Y(CH2SiMe3)2(thf) ( 1 a ) and (η5:κ‐C5Me4? C5H4N)2YCH2SiMe3 ( 1 b ), in a 5:2 ratio. Addition of the same ligand (2 equiv) to Y(CH2SiMe3)3(thf)2, however, generated 1 b together with the novel complex 1 c , the first well defined yttrium mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)[C5HMe33‐CH2)‐C5H4N‐κ]Y(CH2SiMe3) containing a rare κ/η3‐allylic coordination mode in which the C? H bond activation occurs unexpectedly with the allylic methyl group rather than conventionally on Cp ring. If the central metal was changed to lutetium, the equimolar reaction between Lu(CH2SiMe3)3(thf)2 and C5Me4H? C5H4N exclusively afforded the bis(alkyl) product (η5:κ‐C5Me4? C5H4N)Lu(CH2SiMe3)2(thf) ( 2 a ). Similarly, the reaction between the ligand (2 equiv) and Lu(CH2SiMe3)3(thf)2 gave the mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)2LuCH2SiMe3 ( 2 b ), in which no ligand redistribution was observed. Strikingly, treatment of Sc(CH2SiMe3)3(thf)2 with C5Me4H? C5H4N in either 1:1 or 1:2 ratio at 0 °C generated the first cyclopentadienide‐based scandium zwitterionic “tuck‐over” complex 3 , (η5:κ‐C5Me4? C5H4N)Sc(thf)[μ‐η51:κ‐C5Me3(CH2)‐C5H4N]Sc(CH2SiMe3)3. In the zwitterion, the dianionic ligand [C5Me3(CH2)‐C5H4N]2? binds both to Sc13+ and to Sc23+, in η5 and η1/κ modes. In addition, the reaction chemistry, the molecular structures, and the mechanism are also discussed in detail.  相似文献   

11.
Sodium and potassium tetrakis(3,5-di-tert-butylpyrazolato)lanthanoidate(III) complexes [M[Ln(tBu(2)pz)(4)]] have been prepared by reaction of anhydrous lanthanoid trihalides with alkali metal 3,5-di-tert-butylpyrazolates at 200-300 degrees C, and a 1,2,4,5-tetramethylbenzene flux for M=K. On extraction with toluene (or occasionally directly from the reaction tube) the following complexes were isolated: [Na(PhMe)[Ln(tBu(2)pz)(4)]] (1 Ln; 1 Ln=1 Tb, 1 Ho, 1 Er, 1 Yb), [K(PhMe)[Ln(tBu(2)pz)(4)]].2 PhMe (2 Ln; 2 Ln=2 La, 2 Sm, 2 Tb, 2 Ho, 2 Yb, 2 Lu), [Na[Ln(tBu(2)pz)(4)]](n) (3 Ln; 3 Ln=3 La, 3 Tb, 3 Ho, 3 Er, 3 Yb), [K[Ln(tBu(2)pz)(4)]](n) (4 Ln; 4 Ln=4 La, 4 Nd, 4 Sm, 4 Tb, 4 Ho, 4 Er, 4 Yb, 4 Lu), with the last two classes generally being obtained by loss of toluene from 1 Ln or 2 Ln, and [Na(tBu(2)pzH)[Ln(tBu(2)pz)(4)]].PhMe (5 Ln; 5 Ln=5 Nd, 5 Er, 5 Yb). Extraction with 1,2-dimethoxyethane (DME) after isolation of 2 Ho yielded [K(dme)[Ho(tBu(2)pz)(4)]] (6 Ho). X-ray crystal structures of 1 Ln (=1 Tb, 1 Ho; P2(1)/c), 2 Ln (=2 La, 2 Sm, 2 Tb, 2 Yb, 2 Lu; Pnma), 3,4 Ln (=3 La, 3 Er, 4 Sm; P2(1)/m), and 5 Ln (=5 Nd, 5 Er, and 5 Yb; P1) show each group to be isomorphous regardless of the size of the Ln(3+) ion. All complexes contain eight-coordinate [Ln(eta(2)-tBu(2)pz)(4)] units. These are further linked to the alkali metal by bridging through two (1,2,5 Ln) or three (3,4 Ln) tBu(2)pz groups which show striking coordination versatility. Sodium is coordinated by an eta(4)-PhMe, a micro-eta(2):eta(2)-tBu(2)pz, and a micro-eta(4)(Na):eta(2)(Ln)-tBu(2)pz ligand in 1 Ln, and by one eta(1)-tBu(2)pzH and two micro-eta(3)(Na):eta(2)(Ln) ligands in 5 Ln. By contrast, potassium has one eta(6)-PhMe and two micro-eta(5)(K):eta(2)(Ln) ligands in 2 Ln. Classes 3,4 Ln form polymeric chains with the alkali metal bonded by two micro-eta(3)(NNC-M):eta(2)(Ln)-tBu(2)pz ligands within [MLn(tBu(2)pz)(4)] units which are joined together by eta(1)(C)-tBu(2)pz-Na, K linkages.  相似文献   

12.
Organometallic Compounds of the Lanthanides. 113. [(tert-Butylcyclopentadienyl)(cyclopentadienyl)dimethylsilane] Complexes of selected Lanthanides The reaction of [Me2Si(C5H4)(tBuC5H3)]Li2 with LnCl3 (Ln = Y, Nd, Sm, Lu) in THF results in the formation of the chiral, dimeric complexes [Me2Si(C5H4)(tBuC5H3)]Ln(μ-Cl)2Li(THF)(Et2O) [Ln = Y ( 1 ), Nd ( 2 ), Sm ( 3 ), Lu ( 4 )]. The 1H-, 13C-NMR- and the mass spectra of the new compounds as well as the X-ray crystal structures of 2 a and 3 a were discussed.  相似文献   

13.
Heterobinuclear complexes of formula [LMCl2(pz)M′(tfb)] (M = Ru, L = p-cymene, M′ = Rh; M = Ir, L = C5Me5, M′ = Rh; M = Rh, L = C5Me5, M′ = Ir) and [(C5Me5)IrCl(pz)2Rh(tfb)] (tfb = tetrafluorobenzo[5.6]bicyclo[2.2.2]octan-2,5,7-triene) have been prepared. The molecular structure of [(p-cymene)Ru(μ-Cl)2(μ-pz)Rh(tfb)] has been determined by X-ray diffraction. It consists of two moieties, (p-cymene)Ru and (tfb)Rh, triply-bridged by a pyrazolate group and two chlorine atoms.  相似文献   

14.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

15.
Organometallic Compounds of the Lanthanides. 88. Monomeric Lanthanide(III) Amides: Synthesis and X-Ray Crystal Structure of [Nd{N(C6H5)(SiMe3)}3(THF)], [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2,6)(SiMe3)}2(THF)], and [ClNd{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] A series of lanthanide(III) amides [Ln{N(C6H5) · (SiMe3)}3(THF)x] [Ln = Y ( 1 ), La ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Tb ( 6 ), Er ( 8 ), Yb ( 9 ), Lu ( 10 )] could be prepared by the reaction of lanthanide trichlorides, LnCl3, with LiN(C6H5)(SiMe3). Treatment of NdCl3(THF)2 and LuCl3(THF)3 with the lithium salts of the bulky amides [N(C6H3R2-2,6)(SiMe3)]? (R = Me, iso-Pr) results in the formation of the lanthanide diamides [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2, 6)(SiMe3)}2(THF)] ( 11 ) and [ClLn{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] [Ln = Nd ( 12 ), Lu ( 13 )], respectively. The 1H- and 13C-NMR and mass spectra of the new compounds as well as the X-ray crystal structures of the neodymium derivatives 3 , 11 and 12 are discussed.  相似文献   

16.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

17.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

18.
Lithiation of 6-methyl-2-(trimethylsilylamino)pyridine (APyTMSH) occurs smoothly in tetrahydrofuran (thf) affording [Li(APyTMS)(thf)]2 (1). Treatment of anhydrous lanthanoid chlorides (LnCl3, Ln=Gd, Er) with 1.5 equivalents of (1) yields the solvent-free homoleptic tris–amido complexes [Ln(APyTMS)3], (Ln=Gd (2); Ln=Er (3)). Similar treatment of LnCl3 (Ln=Gd, Er) with one equivalents of 1 putatively generates the heteroleptic species [Ln(APyTMS)2Cl], (Ln=Gd (4); Ln=Er (5)) in situ, however, these compounds undergo redistribution in hexane to yield homoleptic 2 and 3 and the anhydrous lanthanoid halides (Ln=Gd, (6), Ln=Er (7)) and were therefore not fully characterised. These lanthanoid reagents are extremely moisture sensitive as examplified by the low yield isolation of [APyH2·H]2[ErCl5(thf)] during one prepartion of 3. The structures of compounds 1, 2, 3 and 8 were characterised by X-ray crystallographic methods. The X-ray structure of 1 is a centrosymmetric dimer similar to its diethyl ether analogue. Compounds 2 and 3 are six-coordinate homoleptic mononuclear species and compound 8 comprises the unprecedented [ErCl5(thf)] anion within an intricate hydrogen-bonded ionic system.  相似文献   

19.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

20.
The cerium(IV) pyrazolate complexes [Ce(Me2pz)4]2 and [Ce(Me2pz)4(thf)] initiate β-hydride abstraction of the bis(dimethylsilyl)amido moiety, to afford a heteroleptic cerium(IV) species containing a dimethylpyrazolyl-substituted silylamido ligand, namely [Ce(Me2pz)3(bpsa)] (bpsa=bis((3,5-dimethylpyrazol-1-yl)dimethylsilyl)amido; Me2pz =3,5-dimethylpyrazolato), along with some cerium(III) species. Remarkably, the nucleophilic attack of the pyrazolyl at the silicon atom and concomitant Si−H-bond cleavage is restricted to the tetravalent cerium oxidation state and appears to proceed via the formation of a transient cerium(IV) hydride, which engages in immediate redox chemistry. When [Ce(Me2pz)4]2 is treated with [Li{N(SiMe3)2}], that is, in the absence of the SiH functionality, any redox chemistry did not occur. Instead, the ceric ate complex [LiCe2(Me2pz)9] and the stable mixed-ligand ceric species [Ce(Me2pz)2{N(SiMe3)2}2] were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号