首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonolysis Reaction of (NH4)2GeF6. Synthesis and Structure of NH4[Ge(NH3)F5] (NH4)2GeF6 reacts with ammonia to yield NH4[Ge(NH3)F5] at 280°C. The reaction path was elucidated by in situ time and temperature resolved X-ray powder diffraction. NH4[Ge(NH3)F5] crystallizes isostructurally to NH4[Si(NH3)F5] in the tetragonal space group P4/n (No. 85) with lattice constants a = 619.41(1) pm and c = 724.70(1) pm. The germanium atom is coordinated by five fluorine atoms and the nitrogen atom of the ammonia molecule. The ammonium cation is located on the Wyckoff position (2 a) in P4/n. The crystal structure is stabilized by extensive hydrogen bonding.  相似文献   

2.
Action of Ammonium Fluoride on Scandium: Synthesis and Crystal Structures of (NH4)3[ScF6] and [Cu(NH3)4]3[ScF6]2 The action of (NH4)F on scandium in copper ampoules yields either (NH4)3[ScF6] or ScF3 and a small quantity of [Cu(NH3)4]3[ScF6]2, respectively, depending upon the molar ratio of the educts (NH4)F : Sc (6 : 1 and 4 : 1, respectively) and temperature. (NH4)3[ScF6] crystallizes with the cryolite type of structure: monoclinic, P21/n, Z = 2; a = 650.0(2); b = 651.4(2); c = 949.0(2) pm; β = 90.40(2)°, [Cu(NH3)4]3[ScF6]2 is triclinic, P‐1, Z = 1; a = 821.1(2); b = 821.2(2); c = 822.7(2) pm; α = 90.04(3); β = 90.00(3); γ = 90.16(3)°. In its chemical behaviour against (NH4)F, scandium parallels aluminium rather than gallium.  相似文献   

3.
Two Gallium Fluoride Ammine Complexes: Ga(NH3)F3 and Ga(NH3)2F3 Two gallium trifluoride ammines, Ga(NH3)F3 and Ga(NH3)2F3, are obtained as single crystals through oxidation of gallium metal with NH4HF2 (Ga : NH4HF2 = 1 : 1.5) and NH4F (Ga : NH4F = 1 : 3.5), respectively, at 450 °C and 400 °C. Ga(NH3)F3 crystallizes with the non-centrosymmetric space group Abm2 (a = b = 544.6(2) pm, c = 986.6(4) pm) forming two-dimensional layers of [Ga(NH3)F5] octahedra. The addition of another NH3 molecule in Ga(NH3)2F3 (orthorhombic, Immm, a = 700.0(3) pm, b = 724.7(2) pm, c = 393.1(1) pm) leads to one-dimensional rods of [Ga(NH3)2F4] octahedra running parallel [001] which are stacked in the [010] direction. Infrared spectra suggest hydrogen bonding (N–H…F) in Ga(NH3)F3, for Ga(NH3)2F3 an unequivocal statement is not possible.  相似文献   

4.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

5.
Two Mercuric Ammoniates: [Hg(NH3)2][HgCl3]2 and [Hg(NH3)4](ClO4)2 [Hg(NH3)2][HgCl3]2 ( 1 ) is obtained by saturating an equimolar solution of HgCl2 and NH4Cl with Hg(NH2)Cl at 75 °C. 1 crystallizes in the orthorhombic space group Pmna with a = 591.9(1) pm, b = 800.3(1) pm, c = 1243.3(4) pm, Z = 2. The structure consists of linear cations [Hg(NH3)2]2+ and T‐shaped anions [HgCl3]. The coordination sphere of mercury is ?effectively”? completed to compressed hexagonal bipyramids and distorted octahedra, respectively. Single crystals of [Hg(NH3)4](ClO4)2 ( 2 ) are obtained by passing gaseous ammonia through a solution of mercuric perchlorate, while the solution was cooled to temperatures below 10 °C. 2 crystallizes in the monoclinic space group P21/c with a = 791.52(9) pm, b = 1084.3(2) pm, c = 1566.4(2) pm, β = 120.352(1)°, Z = 4. The structure consists of compressed [Hg(NH3)4]2+ tetrahedra and perchlorate anions. The packing of the heavy atoms Hg and Cl is analogous to the baddeleyite (α‐ZrO2) type of structure.  相似文献   

6.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

7.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

8.
Synthesis and Crystal Structure of [Cr(NH3)6][Cr(NH3)2F4][BF4]2 The action of ammonium fluoride on a mixture of boron and chromium in a sealed Monel ampoule at 300 °C yields single crystals of [Cr(NH3)6][Cr(NH3)2F4][BF4]2. The crystal structure (tetragonal, P4/mbm, Z = 2, a = 1056.0(1), c = 781.7(1) pm; R1 = 0.0414; wR2 = 0.1087 for 411 reflections with I0 > 2σ(I)) contains [Cr(NH3)6]3+ and [Cr(NH3)2F4] octahedra and twice as many [BF4] tetrahedra that are arranged in a quadrupled super‐structure of the CsCl‐type of structure.  相似文献   

9.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

10.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

11.
Synthesis, Structure and Thermolysis of NH4[Re3Br10] NH4[Re3Br10] crystallizes as dark brown single crystals upon slow cooling of a hot, saturated hydrobromic-acid solution of [Re3Br9(H2O)2] after the addition of NH4Br. The crystal structure (monoclinic, C2/m (Nr. 12); Z = 4; a = 1461.6(7), b = 1 085.6(4), c = 1030.3(7) pm, β = 92.63(4)°, Vm = 245.9(4)cm3/mol; R = 0.097, Rw = 0.043) contains [Re3Br12]? units that share two common edges. These chains run along [010] and are held together by NH4+ ions. Each NH4+ is surrounded by eight Br? from four different chains. The first step of the thermal decomposition at 290°C is the disproportionation to ReBr3 (ReCl3 type), rhenium metal and (NH4)2[ReBr6]. Secondly, the internal reduction of (NH4)2[ReBr6] at 390°C to rhenium metal takes place.  相似文献   

12.
[Ag(NH3)2]ClO4: Crystal Structures, Phase Transition, and Vibrational Spectra [Ag(NH3)2](ClO4) is obtained from a solution of AgClO4 in conc. ammonia as colourless single crystals (orthorhombic, Pnmn, Z = 4, a = 795.2(1) pm, b = 617.7(1) pm, c = 1298.2(2) pm, Rall = 0.0494). The structure consists of linearly coordinated cations, [Ag(NH3)2]+, stacked in a staggered conformation and of tetrahedral (ClO4) anions. A first order phase transition was observed between 210 and 200 K and the crystal structure of the low‐temperature modification (monoclinic, P2/m, Z = 4, a = 789.9(5) pm, b = 604.1(5) pm, c = 1290.4(5) pm, β = 97.436(5)°, at 170 K, Rall = 0.0636) has also been solved. Spectroscopic investigations (IR/Raman) have been carried out and the assignment of the spectra is discussed.  相似文献   

13.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

14.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

15.
Formation of NH4[Hg3(NH)2](NO3)3 and Transformation to [Hg2N](NO3) NH4[Hg3(NH)2](NO3)3 ( 1 ) and [Hg2N](NO3) ( 2 ) are obtained from conc. aqueous ammonia solutions of Hg(NO3)2 at ambient temperature and under hydrothermal conditions at 180 °C, respectively, as colourless and dark yellow to light brown single crystals. The crystal structures {NH4[Hg3(NH)2](NO3)3: cubic, P4132, a = 1030.4(2) pm, Z = 4, Rall = 0.028; [Hg2N](NO3): tetra gonal, P43212, a = 1540.4(1), c = 909.8(1) pm, Z = 4, Rall = 0.054} have been determined from single crystal data. Both exhibit network type structures in which [HNHg3] and [NHg4] tetrahedra of the partial structures of 1 and 2 are connected via three and four vertices, respectively. 1 transforms at about 270 °C in a straightforward reaction to 2 whereby the decomposition products of NH4NO3 are set free. 2 decomposes at about 380 °C forming yellow HgO. Most certainly, 1 is identical with a mineral previously analyzed as “Hg(NH2)(NO3)” with the same Hg:N:O ratio.  相似文献   

16.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

17.
Pr4S3[Si2O7] and Pr3Cl3[Si2O7]: Derivatives of Praseodymium Disilicate Modified by Soft Foreign Anions For synthesizing both the disilicate derivatives Pr4S3[Si2O7] and Pr3Cl3[Si2O7], Pr, Pr6O11 and SiO2 are brought to reaction with S and PrCl3, respectively, in suitable molar ratios (850 °C, 7 d) in evacuated silica tubes. By using NaCl as a flux, Pr4S3[Si2O7] crystallizes as pale green, transparent single crystals (tetragonal, I41/amd, a = 1201.6(1), c = 1412.0(2) pm, Z = 8) with the appearance of slightly compressed octahedra. On the other hand, Pr3Cl3[Si2O7] emerges as pale green, transparent platelets and crystallizes monoclinically (space group: P21, a = 530.96(6), b = 1200.2(1), c = 783.11(8) pm, β = 109.07(1)°, Z = 2). In both crystal structures ecliptically conformed [Si2O7]6– units of two corner‐linked [SiO4] tetrahedra with Si–O–Si bridging angles of 131° in the sulfide and 148° in the chloride disilicate are present. In Pr4S3[Si2O7] both crystallographically independent Pr3+ cations show coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) and 9 (3 S2– and 6 O2–). For Pr1, Pr2 and Pr3 in Pr3Cl3[Si2O7] coordination numbers of 10 (5 Cl and 5 O2–) and 9 (2 ×; 4 Cl and 5 O2– or 3 Cl and 6 O2–, respectively) occur.  相似文献   

18.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

19.
About Selenidostannates. I Synthesis, Structure, and Properties of [Sn2Se6]4–, [Sn4Se10]4–, and [Sn3Se7]2– The selenidostannates [(C4H9)2NH2]4Sn2Se6 · H2O ( I ), [(C4H9)2NH2]4Sn4Se10 · 2 H2O ( II ) und [(C3H7)3NH]2Sn3Se7 ( III ) were prepared by hydrothermal syntheses from the elements and the amines. I crystallizes in the monoclinic spacegroup P21/n (a = 1262.9(3) pm, b = 1851.3(4) pm, c = 2305.2(4) pm, β = 104.13(3)° and Z = 4). The [Sn2Se6]4– anion consists of two edge‐sharing tetrahedra. II crystallizes in the orthorhombic spacegroup Pna21 (a = 2080.3(4) pm, b = 1308.2(3) pm, c = 2263.5(5) pm and Z = 4). The anion is formed from four SnSe4 tetrahedra which are joined by common corners to the adamantane cage [Sn4Se10]4–. III crystallizes in the orthorhombic spacegroup Pbcn (a = 1371.1(3) pm, b = 2285.4(5) pm, c = 2194.7(4) pm and Z = 8). The anion is a chain, built from edge‐sharing [Sn3Se5Se4/2]2– units, in which two corner sharing tetrahedra are connected to a trigonal bipyramid by an edge of one and a corner of the other tetrahedron. The results of the TG/DSC measurements and of temperature dependent X‐ray diffractograms reveal that I and II decompose at first by release of minor quantities of triethylammonium to compounds with layer structure and larger cell dimensions. At still higher temperature the rest of triethylammonium and H2Se is evolved, leaving SnSe2 and Se in the bulk. The former decomposes partially at the highest temperature to SnSe. In the measurements of III the complex intermediate compound was not observed. III decomposes directly to SnSe2.  相似文献   

20.
Synthesis and Structure of the Ternary Ammonium Nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) Single crystals of the ternary ammonium nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) are obtained from the solution of the sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)2[Tm(NO3)5] (trigonal, P31, Z = 3; a = 1 123.76(8), c = 930.1(1) pm; R = 0.062; Rw = 0.034) Tm3+ is surrounded by five bidentate nitrate ligands. The isolated [Tm(NO3)5]2? groups are held together by ammonium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号