首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of phosphite anions and of tris(trimethylsilyl) phosphite (P(OSiMe3)3) to N-glycosyl-C-arylnitrones was examined. While these nitrones proved inert towards the phosphite anions, they reacted with P(OSiMe3)3 under catalysis by Lewis acids. Thus, P(OSiMe3)3 reacted with the crystalline (Z)-N-glycosylnitrones 2 and 8 to give the optically active N-hydroxy-α-aminophosphonic acids 4 and 10 , respectively, and hence the α-aminophosphonic acids 5 and 11 in yields up to 92% and with an enantiomeric excess (e.e.) up to 97% (Scheme 1). The absolute configuration of the phosphonates depend upon the nature and – in one case – upon the quantity of the catalyst (Figure). Upon catalysis by HCIO4 or Zn(OTF)2, p(OSiMe3)3 added to 2 to give, in both cases, the (+)-(R)-phenylphosphaglycine 5 (optical purity 79–84 and 90–93%, resp.). The optical purity (o.p.) was hardly influenced by the amount of these catalysts (0.02-;1 equiv.). However, catalysis by ZnCl2 gave, with trace quantities of the catalyst, (–)-(S)- 5 (o.p. 79%), while an equimolar amount of ZnCl2 yielded (+)-(R)- 5 (o.p. 82%). The HClO4-catalyzed addition of P(OSiMe3)3 to the nitrone 14 (Scheme 2) led to (+)-(R)-N-hydroxyphosphavaline 15 (78%) and hence to (–)-(R)-phosphavaline 16 (71% from 14 e.e. 95%). Under conditions leading from the nitrones 2 , 8 , 14 , and 20 (Schemes 1 and 2) predominantly to (R)-α-aminophosphonic acids, the addition of P(OSiMe3)3 to nitrone 18 , possessing a benzyloxy substituent as an additional potential ligand for the catalyst, gave (S)-phosphaserine 19 . The addition of P(OSiMe3)3 to the nitrone 20 , catalyzed by Zn(OTf)2, led to (+)-(R)-N-hydroxyphosphamehionine 21 (71%, e.e. 77%) and hence to (–)-(R)-phosphamethionine 22 (77% from 20 , e.e. 79%). Catalysis by trace quantities of ZnCl2 gave (+)-(S)- 22 (85%, e.e. 61%). The enantiomerically pure aminophosphonic acids 5 , 11 , and 16 were obtained by recrystalliztion. The e.e. of the N-hydroxyaminosphosphonic acids 10 , 15 , and 21 and the aminophosphonic acids 5 , 11 , 16 , and 22 were determined by the HPLC analysis of the dimethyl N-naphthoyl-α-aminophosphonats 7 , 13 , 17 , and 23 , on a chiral stationary phase.  相似文献   

2.
Treatment of methyl 2-(1-hydroxyalkyl)prop-2-enoates 1 with conc. HBr solution afforded methyl (Z)-2-(bromomethyl)alk-2-enoates 2 , which were transformed regioselectively into N-substituted methyl (E)-2- (aminomethyl)alk-2-enoates 3 (SN2 reaction) and into N-substituted methyl 2-(1-aminoalkyl)prop-2-enoates 4 (SN2′ reaction). Regiocontrol of nucleophilic attack by amine was accomplished simply by choice of solvent, the SN2 reaction occurring in MeCN and the SN2′ reaction in petroleum ether. Hydrolysis and lactamization afforded β-lactams 7 and 8 , containing an exocyciic alkylidene and methylidene group at C(3), respectively.  相似文献   

3.
Chiral Building Blocks for Syntheses by Kolbe Electrolysis of Enantiomerically Pure β-Hydroxybutyric-Acid Derivatives. (R)- and (S)-Methyl-, and (R)-Trifluoromethyl-γ-butyrolactones, and -δ-valerolactones The coupling of chiral, non-racemic R* groups by Kolbe electrolysis of carboxylic acids R*COOH is used to prepare compounds with a 1.4- and 1.5-distance of the functional groups. The suitably protected β-hydroxycarboxylic acids (R)- or (S)-3-hydroxybutyric acid, (R)-4,4,4-trifluoro-3-hydroxybutyric acid (as acetates; see 1 – 6 ), and (S)-malic acid (as (2S,5S)-2-(tert-butyl)-5-oxo-1,3-dioxolan-4-acetic acid; see 7 ) are decarboxylatively dimerized or ‘codimerized’ with 2-methylpropanoic acid, with 4-(formylamino)butyric acid, and with monomethyl malonate and succinate. The products formed are derivatives of (R,R)-1,1,1,6,6,6-hexafluoro-2,5-hexanediol (see 8 ), of (R)-5,5,5-trifluoro-4-hydroxypentanoic acid (see 9,10 ), of (R)- and (S)-5-hydroxyhexanoic acid (see 11 ) and its trifluoro analogue (see 12, 13 ), of (S)-2-hydroxy- and (S,S)-2,5-dihydroxyadipic acid (see 23, 20 ), of (S)-2-hydroxy-4-methylpentanoic acid (‘OH-leucine’, see 21 ), and of (S)-2-hydroxy-6-aminohexanoic acid (‘OH-lysine’, see 22 ). Some of these products are further converted to CH3- or CF3-substituted γ- and δ-lactones of (R)- or (S)-configuration ( 14 , 16 – 19 ), or to an enantiomerically pure derivative of (R)-1-hydroxy-2-oxocyclopentane-1-carboxylic acid (see 24 ). Possible uses of these new chiral building blocks for the synthesis of natural products and their CF3 analogues (brefeldin, sulcatol, zearalenone) are discussed. The olfactory properties of (R)- and (S)-δ-caprolactone ( 18 ) are compared with those of (R)-6,6,6-trifluoro-δ-caprolactone ( 19 ).  相似文献   

4.
Chiral enolates of imidazolidinones and oxazolidinones from the title amino acids react with carbonyl compounds to afford the corresponding alcohols in excellent yields (see Scheme 5). Furthermore, the addition to aldehydes proceeds with high diastereoselectivity to give, after acid hydrolysis, threo-α-amino-β-hydroxy acids of high enantiomeric purity. Some of the threo-α-amino-β-hydroxy acids prepared in this work are the proteinogenic (S)-threonine ( 26 ), the naturally occurring (S)-3-phenylserine ( 28 ), and (S)-3-hydroxyleucine ( 27 ) as well as the unnatural (S)-4,4,4-trifluorothreonine ( 30 ) and (S)-3-(4-pyridyl)serine ( 31 ). The N-methylamide of (2S,3R,4R,6E)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic acid ( 32 ), the unique amino acid in the immunosuppressive cyclosporine, was prepared by the new method. This report presents also information suggesting that both steric and stereoelectronic effects are responsible for the good stereoselectivities observed.  相似文献   

5.
This work describes L -phenylalanine cyclohexylamide ( 5c ) as a simple, cheap, and powerful chiral auxiliary for the synthesis of a series of optically pure α,α-disubstituted (R)- and (S)-amino acids of type 1 , such as (R)- and (S)-2-methyl-phenylalanine ( 1a ), (R)- and (S)-2-methyl-2-phenylglycine ( 1b ), and (R)- and (S)-2-methylvaline ( 1c ; Scheme 3). These amino acids were efficiently transformed into the suitably protected and activated amino acid building blocks (R)- and (S)- 12b and (R)- and (S)- 12c (Scheme 4) which are ready for incorporation into peptides by solution or solid-phase techniques. Based on the crystal structures of 6b, 6c , and 7a belonging to the diastereoisomeric peptides series 6 and 7 , the absolute configurations of each member of the series were determined. β-Turn geometries of type II′ and I were observed for 6b and 7a , respectively, whereas 6c crystallized in an extended conformation. The impacts of side-chain variation on conformation and crystal packing of these triamides are discussed.  相似文献   

6.
About the Stereospecific α-Alkylation of β-Hydroxyesters It was found, that dianions derived from β-hydroxyesters with lithium diisopropylamide (LDA) at ?50 to ?20° were alkylated stereospecifically (Scheme 1). The stereospecificity was 95–98%, the threo-compound (threo -2, -3 and -4) being the main product. This was proved for threo -2 and -3 by preparing the β-lactones 7 and 8 , respectively, which were pyrolyzed to trans-1, 4-hexadiene (9) and trans-1-phenyl-2-butene (10) , respectively (Scheme 2). Moreover, the acid threo -6 from threo -3 was converted by dimethylformamide-dimethylacetal to cis-1-phenyl-2-butene (11) (s. footnote 6). The alkylation of α-monosubstituted β-hydroxyesters also turned out to be stereospecific. Reduction of 16 and 18 with actively fermenting yeast furnished (+) -17 and (+) -2. respectively (Scheme 4), which were each mixtures of the (2R, 3S)- and the (2S, 3S)-isomers. Alkylation of (+) -17 with allyl bromide yielded after chromatography (2S, 3S) -19 and of (+) -2 with methyl iodide (2R, 3S) -19 , the oxidation of which finally gave (S)-(?) -20 and (R)-(+) -20 , respectively.  相似文献   

7.
Total Synthesis of Natural α-Tocopherol A short and efficient route to optically pure (+)-(3 R, 7 R)-trimethyldodecanol ( 14 ) is demonstrated, 14 serving as side chain unit in the preparation of natural vitamin E. The synthesis of 14 is based on the concept of using a single optically active C5-synthon of suitable configuration and functionalization to introduce both asymmetric centres in 14 . (?)-(S)-3-Methyl-γ-butyrolacton ( 1 ) and ethyl (?)-(S)-4-bromo-3-methylbutyrate ( 2 ), respectively, is used in a sequence of either two Grignard C,C-coupling reactions 5 → 8 and 12 → 13 or two Wittig reactions 17a → 18 and 20 → 21 to achieve this goal. 14 is converted to (2 R, 4′R, 8′R)-α-tocopherol (= vitamin E) by coupling with a chroman unit in known manner. Optical purity of products and intermediates is established.  相似文献   

8.
A series of novel open-chain and cyclic conformationally constrained α,α-disubstituted (R)- and (S)-glycine derivatives (‘α-chimeras’) combining side chains of Asp, Glu, Leu, Phe, Ser, and Val have been efficiently synthesized by using α-alkylation of racemic 4-monosubstituted 2-phenyl-1,3-oxazol-5(4H)-ones of type 5 , resolution after reaction with (S)-phenylalanine cyclohexylamide ( 8 ) as chiral auxiliary, a novel azlactone/dihydrooxazole interconversion reaction to synthesize optically pure α-substituted (R)- and (S)-serine derivatives coupled with succinimide-ring formation of aspartic-acid derivatives. Based on X-ray structures of (R,S)- 9b , (R,S)- 11c , (R,S)- 18 , and (S,S)- 30 , the absolute configuration of these novel amino-acid building blocks could be unambiguously determined and their preferred conformations in the crystalline state be assessed. The high preference of the open-chain derivatives (R,S)- 1 , (S,S)- 3 , and (R,S)- 11c for β-turn type-I conformations, as well as of the succinimide derivatives (R,S)- 2 , (S,S)- 19 , (S,S)- 24 , (S,S,S)- 26 , and (R,S)- 29 for β-turn type-II conformations and of (S,S)- 4 , (R,S)- 18 , (R,S)- 23 , and (S,S)- 30 for β-turn type-II′ conformations could be confirmed in solution by using CD and NMR spectroscopy. Finally, the spiro derivatives (R,S)- 29 and (S,S)- 30 incorporating the ‘α-chimera’ of Asp/Glu constitute doubly constrained peptide building blocks combining the properties of α-substituted prolines and aspartimides.  相似文献   

9.
The Stereoselectivity of the α-Alkylation of (+)-(1R, 2S)-cis-Ethyl-2-hydroxy-cyclohexanecarboxylate In continuation of our work on the stereoselectivity of the α-alkylation of β-hydroxyesters [1] [2], we studied this reaction with the title compound (+)- 2 . The latter was prepared through reduction of 1 with baker's yeast. Alkylation of the dianion of (+)- 2 furnished (?)- 4 in 72% chemical yield (Scheme 1) and with a stereoselectivity of 95%. Analogously, (?)- 7 was prepared with similar yields. Oxidation of (?)- 4 and (?)- 7 respectively furnished the ketones (?)- 6 (Scheme 3) and (?)- 8 (Scheme 4) respectively, each with about 76% enantiomeric excess (NMR.). It is noteworthy that yeast reduction of rac- 6 (Scheme 3) is completely enantioselective with respect to substrate and product and gives optically pure (?)- 4 in 10% yield, which was converted into optically pure (?)- 6 (Scheme 3). The alkylation of the dianionic intermediate shows a higher stereoselectivity (95%) from the pseudoequatorial side than that of 1-acetyl- or 1-cyano-4-t-butyl-cyclohexane (71% and 85%) [9] or that of ethyl 2-methyl-cyclohexanecarboxylate (82%). The stereochemical outcome of the above alkylation is comparable with that found in open chain examples [1] [2]. Finally (+)-(1R, 2S)- 2 was also alkylated with Wichterle's reagent to give (?)-(1S, 2S)- 9 in 64% yield. The latter was transformed into (?)-(S)- 10 and further into (?)-(S)- 11 (Scheme 5). (?)-(S)- 10 and (?)-(S)- 11 showed an e.e. of 76–78% (see also [11]). Comparison of these results with those in [11] confirmed our former stereochemical assignment concerning the alkylation step.  相似文献   

10.
(R)-and (S)-γ-cyclogeranic acid ((R)-and (S)- 9 , resp.) were obtained by resolution of the racemate, and their absolute configurations determined by chemical correlation. The γ-acids (R)-and (S)- 9 were converted into (R)-and (S)-methyl γ-cyclogeranate ((R)-and (S)- 6 , resp.), and (R)-and (S)-γ-damascone ((R)-and (S)- 5 , resp.). A more direct entry to (R)-and (S)- 9 consisted in the enantioselective protonation of a thiol ester enolate with (?)- or (γ)-N-isopropylephedrine((?)- or (γ)- 20 ) and subsequent hydrolysis of the (R)-and (S)-S-phenyl γ-thiocyclogeranate ((R)- and (S)- 24 , resp.; 97% ee). The esters (R)- and (S)- 24 were also used as precursors of (R)- and (S)-γ-damascone ((R)- and (S)- 5 , resp.). Alternatively, (S)- 5 (75% ee) was obtained by enantioselective protonation of ketone enolate 29 with (?)-N-isopropylephedrine ((?)- 20 ). Organoleptic evaluation demonstrated that the (S)-enantiomers of methyl γ-cyclogeranate and γ-damascone are markedly superior to their (R)-enantiomers.  相似文献   

11.
Carotenoids with 7-Oxabicyclo[2,2.1]heptyl End Groups. Attempted Synthesis of Cycloviolaxanthin ( = (3S,5R,6S,3′S,5′R,6′R)-3,6:3′,6′- Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotin-5,5′-diol) Starting from our recently described synthon (+)- 24 , the enantiomerically pure 3,6:4,5:3′,6′:4′,5′-tetraepoxy-4,5,4′,5′-tetrahydro-ε,ε-carotene ( 34 ) and its 15,15′-didehydro analogue 32 were synthesized in eleven and nine steps, respectively (Scheme 4). Chiroptical data show, in contrast to the parent ε,ε-carotene, a very weak interaction between the chiral centers at C(5), C(5′), C(6), C(6′), and the polyene system. Diisobutylaluminium hydride reduction of 32 lead rather than to the expected 15,15′-didehydro analogue 35 of Cycloviolaxanthin ( 8 ), to the polyenyne 36 (Scheme 5). We explain this reaction by an oxirane rearrangement leading to a cyclopropyl ether followed by a fragmentation to an aldehyd on the one side and an enol ether on the other (Scheme 6). This complex rearrangement includes a shift of the whole polyenyne chain from C(6), C(6′) to C(5), C(5′) of the original molecule.  相似文献   

12.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

13.
From bergamot oil (Citrus bergamia RISSO), (?)-(4S, 8R)-8-epi-α-bisabolol ( 2 ) and (?)-(4R, 8S)-4-epi-β-bisabolol ( 3 ) were isolated. The absolute configuration of their stereoisomers 4 and 5 was established by an enantioselective synthesis starting from (?)-(S)-p-mentha-1,8-dien-4-ol.  相似文献   

14.
Total Synthesis of Naturally Occurring α-Tocopherol. Asymmetric Alkylation and Asymmetric Epoxidation as Means to Introduce (R)-Configuration at C(2) of the Chroman Moiety Based on the reductive, stereospecific ring closure of (2R,4′R,8′R)-α-Tocophcrylquinone′ or corresponding analogues with a short, functionalized side chain ( B , Scheme 1) to 1 resp. the chroman system of 1 (C), two different approaches for the introduction of the required tertiary methyl-substituted alcohol structure in the side chain of the aromatic precursors ( A , Scheme 1) were developed. The first approach uses asymmetric alkylation in three different versions featuring (a) diastereoselective steering with chiral auxiliaries I-IV (Scheme 2) attached as esters to a-keto acids, (b) intermediate transfer of chirality in an ester enolate (from 18 , Scheme 4) derived from an optically active α-hydroxy acid, (c) enantioselective alkylation of phytenal ( 20 ) and subsequent ring closure with chirality transfer (Schemes 5–7). The second approach is based on the asymmetric epoxidation of β-metallylalcohol (Sharpless epoxidation), the corresponding epoxyalcohol being converted in situ to the (S)-or (R)-chlorodiol (S)-and (R)- 29 , respectively, for isolation (Schemes 8 and 9). Nucleophilic epoxide opening with a (3R 7R)-3,7,11-trimethyldodecyl (C15**) and an ArCH2 unit in appropriate sequence is used to assemble the C-framework of the target molecule via corresponding epoxide intermediates from either chlorodiol. Combined with the use of the methoxymethyl-ether function for protection of the hydroquinone system, the epoxide approach provides a short route to 1 (Scheme 10).  相似文献   

15.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

16.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

17.
Enantiomerically pure (+)‐(1S,4S,5S,6S)‐6‐endo‐(benzyloxy)‐5‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((+)‐ 5 ) and its enantiomer (−)‐ 5 , obtained readily from the Diels‐Alder addition of furan to 1‐cyanovinyl acetate, can be converted with high stereoselectivity into 8‐oxabicyclo[3.2.1]octane‐2,3,4,6,7‐pentol derivatives (see 23 – 28 in Scheme 2). A precursor of them, (1R,2S,4R,5S,6S,7R,8R)‐7‐endo‐(benzyloxy)‐8‐exo‐hydroxy‐3,9‐dioxatricyclo[4.2.1.02,4]non‐5‐endo‐yl benzoate ((−)‐ 19 ), is transformed into (1R,2R,5S, 6S,7R,8S)‐6‐exo,8‐endo‐bis(acetyloxy)‐2‐endo‐(benzyloxy)‐4‐oxo‐3,9‐dioxabicyclo[3.3.1]non‐7‐endo‐yl benzoate ((−)‐ 43 ) (see Scheme 5). The latter is the precursor of several protected 2,6‐anhydrohepturonic acid derivatives such as the diethyl dithioacetal (−)‐ 57 of methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate (see Schemes 7 and 8). Hydrolysis of (−)‐ 57 provides methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate 48 that undergoes highly diastereoselective Nozaki‐Oshima condensation with the aluminium enolate resulting from the conjugate addition of Me2AlSPh to (1S,5S,6S,7S)‐7‐endo‐(benzyloxy)‐6‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐8‐oxabicyclo[3.2.1]oct‐3‐en‐2‐one ((−)‐ 13 ) derived from (+)‐ 5 (Scheme 12). This generates a β‐C‐mannopyranoside, i.e., methyl (7S)‐3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐7‐C‐[(1R,2S,3R,4S,5R,6S,7R)‐6‐endo‐(benzyloxy)‐7‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐4‐endo‐hydroxy‐2‐exo‐(phenylthio)‐8‐oxabicyclo[3.2.1]oct‐3‐endo‐yl]‐L ‐glycero‐D ‐manno‐heptonate ((−)‐ 70 ; see Scheme 12), that is converted into the diethyl dithioacetal (−)‐ 75 of methyl 3‐O‐acetyl‐2,6‐anhydro‐4,5‐dideoxy‐4‐C‐{[methyl (7S)‐3,5,7‐tri‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐L ‐glycero‐D ‐manno‐heptonate]‐7‐C‐yl}‐5‐C‐(phenylsulfonyl)‐L ‐glycero‐D ‐galacto‐hepturonate ( 76 ; see Scheme 13). Repeating the Nozaki‐Oshima condensation to enone (−)‐ 13 and the aldehyde resulting from hydrolysis of (−)‐ 75 , a (1→3)‐C,C‐linked trisaccharide precursor (−)‐ 77 is obtained.  相似文献   

18.
The antibiotic myxovirescine M2 was synthesized from seven building blocks ( 1 – 7 , Scheme 1), with the following chiral starting materials being employed: (S)-malic acid, (+)-D -ribonolactone, (S)-2-(hydroxymethyl)butanoate, and (2R,4S)-5-hydroxy-2,4-dimethylpenLanoate. Three new nucleophilic reagents, 8 – 10 , for C-C bond formation have been used. The key steps of the synthesis are: a Suzuki coupling between an alkyl borane and a vinyl bromide ( 4 + 12e → 13 ), a Julia olefinalion ( 14 + 17 → 18 ), and a Yamaguchi macrolactonizalion to form the 28-membered lactone ( 18 → 19 ), This extremely convergenl synthetic approach will allow the preparation of a number of the 31 known myxovirescine molecules.  相似文献   

19.
The synthesis and catalytic properties of a new type of enantioselective phase-transfer catalysts, incorporating both the quinuclidinemethanol fragment of Cinchona alkaloids and a 1,1′-binaphthalene moiety, are described. Catalyst (+)-(aS,3R,4S,8R,9S)- 4 with the quinuclidine fragment attached to C(7′) in the major groove of the 1,1′-binaphthalene residue was predicted by computer modeling to be an efficient enantioselective catalyst for the unsymmetric alkylation of 6,7-dichloro-5-methoxy-2-phenylindanone ( 1 ; Scheme 1, Fig. 1). Its synthesis involved the selective oxidative cross-coupling of two differently substituted naphthalen-2-ols to afford the asymmetrically substituted 1,1′-binaphthalene derivative (±)- 17 in high yield (Scheme 3). Chromatographic optical resolution via formation of diastereoisomeric camphorsulfonyl esters and functional-group manipulation gave access to the 7-bromo-1,1′-binaphthalene derivative (−)-(aS)- 11 (Scheme 4). Nucleophilic addition of lithiated (−)-(aS)- 11 to the quinuclidine Weinreb amide (+)-(3R,4S,8R)- 8 afforded the two ketones (aS,3R,4S,8R)- 27 and (aS,3R,4S,8S)- 28 as an inseparable mixture of diastereoisomers (Scheme 6). Stereoselective reduction of this mixture with DIBAL-H (diisobutylaluminum hydride; preferred formation of the C(8)−C(9) erythro-pair of diastereoisomers with 18% de) or with NaBH4 (preferred formation of the threo-pair of diastereoisomers with 50% de) afforded the four separable diastereoisomers (+)-(aS,3R,4S,8S,9S)- 29 , (+)-(aS,3R,4S,8R,9R)- 30 , (−)-(aS,3R,4S,8S,9R)- 31 , and (+)-(aS,3R,4S,8R,9S)- 32 (Scheme 6). A detailed conformational analysis, combining 1H-NMR spectroscopy and molecular-mechanics computations, revealed that the four diastereoisomers displayed distinctly different conformational preferences (Figs. 2 and 3). These novel Cinchona-alkaloid analogs were quaternized to give (+)-(aS,3R,4S,8R,9S)- 4 , (+)-(aS,3R,4S,8S,9S)- 5 , (+)-(aS,3R,4S,8R,9R)- 6 , and (−)-(aS,3R,4S,8S,9R)- 7 (Scheme 7) which were tested as phase-transfer agents in the asymmetric allylation of phenylindanone 1 . Without any optimization work, (+)-(aS,3R,4S,8R,9S)- 4 was found to catalyze the allylation of 1 yielding the predicted enantiomer (+)-(S)- 3b in 32% ee. The three diastereoisomeric catalysts (+)- 5 , (+)- 6 , and (−)- 7 gave access to lower enantioselectivities (6 to 22% ee's), which could be rationalized by computer modeling (Fig. 4).  相似文献   

20.
Novel, more reliable and general reaction conditions for the α-alkylation of 4-monosubstituted 2-phenyloxazol-5(4H)-ones ( = 4-monosubstituted 2-phenyl-azlactones) rac- 2 to 4,4-disubstituted 2-phenyloxazol-5(4H)-ones rac- 1 were found (Scheme 2). Thus, a whole range of highly functionalized rac- 1 were prepared in medium-to-good overall yields (40-90%, see Table). Azlactones rac- 1 are ideal precursors for the synthesis of optically pure α,α -disubstituted (R)- and (S)-α-amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号