首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on Polyhalides. 30 On Decamethylferriciniumpolyiodides [(Me5C5)2Fe]Ix with x = 3, 5, 6.5: Preparation and Crystal Structures of a Triiodide (DMFc)I3, a Pentaiodide (DMFc)I5 and a Hexacosaiodide (DMFc)4I26 Decamethylferrocene (DMFc) may be oxidized by iodine analogous to ferrocene (Fc) to the decamethylferrocenium ion (DMFc)+ and precipitated as the crystalline solids decamethylferrocenium triiodide (DMFc)I3, decamethylferrocenium pentaiodide (DMFc)I5 and tetracisdecamethylferrocenium hexacosaiodide (DMFc)4I26. The two compounds with higher iodine content are new. These are characterized by X-ray diffraction methods on single crystals. The structures are built up from complex cations of expected geometry and isolated or remarkably connected polyiodide ions. Decamethylferrocenium triiodide C20H30FeI3 crystallizes monoclinically in C2/m with a = 1489.9(4) pm, b = 1133.0(2) pm, c = 765.9(3) pm, β = 111.76(3)° and Z = 2. The crystal structure follows the CsCl-type and contains isolated triiodide ions of the linear symmetric form. Decamethylferrocenium pentaiodide C20H30FeI5 crystallizes monoclinically in P21/c with a = 1130.0(2) pm, b = 1442.6(1) pm, c = 1716.6(2) pm, β = 96.62(1)° and Z = 4. The crystal structure may be deduced from the primitiv quadratic bundle of alternating cationic and anionic rods. It contains exceptionally isolated somewhat opened out pentaiodide ions. Tetrakisdecamethylferrocenium hexacosaiodide (C20H30Fe)4I26 crystallises monoclinically in P21/n with a = 1331.3(8) pm, b = 1319.4(4) pm, c = 3564(2) pm, β = 90.84(5)° and Z = 2. The crystal structure of this compound with unusual composition may be described as an inclusion compound with channels for the cations. The outstanding anionic grating may be derived from the primitive cubic lattice of iodide ions with iodine bridges on all edges by removing systematically 1/12 of the iodine molecules.  相似文献   

2.
Studies of Polyhalides. 22. On Dimethyldiphenylammoniumpolyiodides (Me2Ph2N)In with n = 3, 13/3, 6, and 8: Preparation and Crystal Structures of a Triiodide (Me2Ph2N)I3, Tridecaiodide (Me2Ph2N)3I13, Dodecaiodide (Me2Ph2N)2I12, and Hexadecaiodide (Me2Ph2N)2I16 The new compounds [(CH3)2(C6H5)2N]I3, [(CH3)2(C6H5)2N]3I13, [(CH3)2(C6H5)2N]2I12 and [(CH3)2(C6H5)2N]2I16 have been prepared by the reaction of dimethyldiphenylammonium iodide [(CH3)2(C6H5)2N]I with iodine I2 in ethanol. Their crystal structures have been determined by single crystal X-ray diffraction methods. The structure of the triiodide may be described as a layerlike packing of pairs of nearly linear symmetric anions and tetraedral cations. The tridecaiodide forms zig-zag chains of iodide ions and iodine molecules with the iodide ion also weakly coordinated by two pentaiodide groups. The dodecaiodide is built from two pentaiodide-groups, which are bridged by an iodine molecule and connected with secondary bonds forming double chains. The hexadecaiodide ion forms layers built up from two heptaiodide groups and one iodine molecule. Thus the dimethyldiphenylammonium cation stabilizes a unique series of polyiodides of extraordinary composition and structure.  相似文献   

3.
On the Structure of Two Isothiazolium Polyiodides (C19H16FeNS)I5 and (C15H12NS)2I8 By oxidation of 3‐phenylamino thiopropenones with iodine two isothiazolium polyiodides were obtained, whose structures have been determined by X‐ray structure analysis. 2‐Phenyl‐5‐ferrocenyl‐isothiazolium pentaiodide(C19H16FeNS)I5 forms a layer structure with isothiazolium cations and polyiodide anions. The polyiodide layers contain pentaiodide ions I5, triiodide ions I3 and iodine molecules I2. Bis(2,5‐diphenyl‐isothiazolium) octaiodide (C15H12NS)2I8 also forms a layer structure with isothiazolium cations and polyiodide anions. The polyiodide layers are built up by octaiodide ions I82–, pentaiodide ions I5 and triiodide ions I3.  相似文献   

4.
Studies on Polyhalides. 16. Preparation and Crystal Structures of Bipyridiniumpolyiodides Bipy · HIn with n = 3, 5, and 7 With simply protonated α,α′-Bipyridyl Bipy · H+ a triiodide Bipy · HI3, a pentaiodide Bipy · HI5 and a heptaiodide Bipy · HI7 may be prepared in the presence of iodide ions I? and dependent of the iodine I2 content. Bipyridiniumtriiodide C10H9N2I3 crystallizes at room temperature monoclinically in P21/n with a = 1 122.8(1) pm, b = 1 072.7(1) pm, c = 1 200.2(3) pm, β = 98.02(2)° and Z = 4. The crystal structure is built up from mixed cationic and anionic layers. Bipyridiniumpentaiodide C10H9N2I5 crystallizes at room temperature monoclinically in P21/c with a = 887.3(5) pm, b = 2 527.9(12) pm, c = 830.7(3) pm, β = 106.78(5)° and Z = 4. The crystal structure contains triiodide ions I3? till now uniquely connected by iodine molecules I2 in a trigonal planar way. Bipyridiniumheptaiodide C10H9N2I7 crystallizes at room temperature triclinically in P&1macr; with a = 713.1(3) pm, b = 1 007.9(3) pm, c = 1 464,8(4) pm, α = 81.07(3)°, β = 89.92(3)°, γ = 82.77(3)° and Z = 2. The crystal structure contains a V-shaped pentaiodide ion I5? completed by an iodine molecule I2 to a trigonal pyramidally shaped heptaiodide ion I7? and at the same time connected to a zigzag chain.  相似文献   

5.
[Ba(benzo‐15‐crown‐5)2](I3)2 and [Ba(benzo‐15‐crown‐5)2](I7)2 can be obtained in crystalline form by reacting benzo‐15‐crown‐5 (C14H20O5), barium iodide (BaI2), and iodine (I2) in ethan‐ole /dichloromethane. The triiodide consists of a sandwich‐like cation [Ba(benzo‐15‐crown‐5)2]2+ and an isolated symmetrically linear I3 anion. The unusual I7 anion in the heptaiodide can be described as a V‐shaped pentaiodide unit, which is connected with a slightly widened iodine molecule to the rare Z‐form of the heptaiodide ion. In the crystal structure, secondary bonding distances lead to almost planar ten‐membered iodine rings, which are connected by common edges to form staircase‐like bands.  相似文献   

6.
Studies on Polyhalides. 41. On Ethylmethyldiphenylammoniumpolyiodides (EtMePh2N)Ix with x = 3, 5: Preparation and Crystal Structures of a Triiodide (EtMePh2N)I3 and a Pentaiodide (EtMePh2N)I5 So far unknown compounds (EtMePh2N)Ix with x = 3 and 5 have been prepared and structurally characterized. The triiodide (EtMePh2N)I3 crystallizes monoclinically in C2/c with a = 3406.1(3) pm, b = 893.1(1) pm, c = 1222.7(1) pm, β = 99.24(1)° and Z = 8. The crystal structure contains cationic and two kinds of anionic layers alternating along [1 0 0]. One anionic layer is composed of triiodide ions forming the typical and widespread observed herring‐bone pattern. The other one contains zigzag chains (I · I2) along [0 0 1] as a so far not observed structural motif. The pentaiodide (EtMePh2N)I5 crystallizes triclinically in P 1 with a = 1020.7(1) pm, b = 1023.1(1) pm, c = 1269.5(1) pm, α = 81.88(1)°, β = 72.66(1)°, γ = 60.65(1)° and Z = 2. The crystal structure is divided into along [0 1 1] alternating puckered cationic and anionic layers. The anions have the common shape of a V, but are here of the rare isolated type. From a topological view two pentaiodide ions are connected to chairlike decagonal rings which are concatenated along [0 1 1].  相似文献   

7.
Preparation, Characterization, and Crystal Structures of Tetraiodoferrates(III) The extremely air and moisture sensitive tetraiodoferrates MFeI4 with M = K, Rb and Cs have been synthesized by reaction of Fe, MI and I2 at 300°C in closed quartz ampoules. The essentially more stable alkylammonium tetraiodoferrates NR4FeI4 with R = H, C2H5, n-C3H7, n-C4H9 and n-C5H11 can be obtained by reaction of Fe, NR4I and I2 in nitromethane. The Raman and UV/Vis-spectra of the black compounds show the existence of tetrahedral [FeI4]? ions in the structures. The crystal structure of the monoclinic CsFeI4 (CsTlI4 type, spgr P21/c; a = 7.281(1) Å; b = 17.960(3) Å; c = 8.248(2) Å; β = 107.35(15)°) is built up by tetrahedral [FeI4]? ions and CsI11 polyhedra. The crystal structure of the orthorhombic (n-C5H11)4NFeI4 (spgr Pnna; a = 20.143(4) Å; b = 12.683(3) Å; c = 12.577(3) Å) contains tetrahedral [(n-C5H11)4N]+ ions and [FeI4]? ions, respectively.  相似文献   

8.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

9.
Studies on Polyhalides. 23. Crystal Structures of N-Alkylurotropinium Triiodides UrRI3 with R = Methyl, Ethyl, n-Propyl, and n-Butyl The salts UrRI3 may be prepared by the reaction of N-alkylurotropinium iodides UrRI with iodine I2 at room temperature from aqueous solution. N-methylurotropinium triiodide C7H15N4I3 crystallizes monoclinically in P21/c with a = 1300.8(2) pm, b = 1276.0(3) pm, c = 859.3(2) pm, β = 94.75(2)° and Z = 4. The crystal structure is built up from layers of cations UrMe+ and of linear symmetric triiodide ions I3? alternating along [100]. N-ethylurotropinium triiodide C8H17N4I3 crystallizes orthorhombically in Pnma with a = 1397.3(5) pm, b = 1221.3(2) pm, c = 886.2(2) pm and Z = 4. The cationic (UrEt+) and anionic (I3?) layers alternate along [0 10]. N-propylurotropinium triiodide C9H19N4I3 crystallizes monoclinically in P21/c with a = 1885.7(5) pm, b = 1657.1(5) pm, c = 1700.5(4) pm, β = 112.39(2)° and Z = 12. The three independent cations and anions are slightly, but differently distorted. N-butylurotropinium triiodide C10H21N4I3 crystallizes monoclinically in P21/m with a = 991.8(3) pm, b = 757.8(2) pm, c = 1128.2(2) pm, β = 90.73(2)° and Z = 2. The crystal structure is stacked by alternating cationic and anionic layers along [001]. The triiodide ion is asymmetric and linear.  相似文献   

10.
Studies of Polyhalides. 35. On the Dimethyl(n-propyl)phenylammoniumtriiodide n-PrMe2PhNI3 and on the Series of Dimethyl(isopropyl)phenylammoniumpolyiodides i-PrMe2PhNIx with x = 3, 5, 7, 8, and 9 The new compounds n-PrMe2PhNI3 and i-PrMe2PhNIx with x = 3, 5, 7, 8 and 9 have been prepared by reaction of iodine I2 with n-PrMe2PhNI in EtOH and with i-PrMe2PhNI in MeOH respectively. The crystal structures have been determined by single crystal X-ray diffraction methods. The triiodide n-PrMe2PhNI3 has a layerlike structure with alternating anionic and cationic layers. The similar, but not isotypic triiodide i-PrMe2PhNI3 may be described as a layerlike packing of asymmetric anions and tetraedral cations, too. The structure of the pentaiodide i-PrMe2PhNI5 consists of zig-zag like iodide-diiodine chains with additional iodine molecules attached to the iodide ions in trans position. The pentaiodide part of the heptaiodide ion in i-PrMe2PhNI7 forms meanderlike iodide-bis(diiodine) chains also with additional iodine molecules in trans position. The structure of the hexadecaiodide ion I162– in the octaiodide i-PrMe2PhNI8 contains fourteen-membered rings, which are catenated by iodine molecules and linked to layers with ten- and two types of fourteen membered rings as meshes. The anionic iodine part of the enneaiodide i-PrMe2PhNI9 contains fourteen-membered rings, too, which are tied up by two iodine molecules forming in addition ten membered rings which are lined up alternately.  相似文献   

11.
Metal Sulfur Nitrogen Compounds 18. Reaction Products of S7NH with Nickel and Copper Salts. Preparation and Structures of the Complexes [Ch34N][Ni(S3N)(CN)2], [(C6H5)4As][Cu(S3N)2], and [(C6H5)4AS][Cu(S3N)Cl]. In the presence of MOH (M = K, [(CH3)4N]), S7NH reacts with Ni(CN)2 to yield, besides the three-nuclear complex M[(S3NNi)3S2], the new mononuclear complex M[Ni(S3N)(CN)2]. The [(CH3)4N]+ salt is monoclinic, C2/m, a = 19.303(9), b =6.941(3), c=16.309(10) Å, β = 144.510(2), Z = 4. The [Ni(S3N)(CN)2]- anion is planar, Ni being coordinated by one S3N? chelate ligand and by two CN? ions. From the reaction of CuCI2, S7NH, and [Ph4As]OH result the salts [Ph4As][Cu(S3N)2] or [Ph4As][Cu(S3N)Cl], depending on the reaction conditions. [Ph4As][Cu(S3N)2] is triclinic, P&1macr;, a = 7.073(3), b = 11.742(4), c = 16.439(6) Å α = 91.08°(3), β = 99.01°(3), γ = 91.58°(3), Z = 2. Two S3N? chelate ligands coordinate to CuI in a distorted tetrahedral arrangement. [Ph4As][Cu(S3N)Cl] is monoclinic, C2/c, a = 17.174(6), b = 13.650(5), c = 21.783(5) Å β = 100.45°(2), Z = 8. CuI is coordinated by one S3N? chelate ligand and one C1?, resulting in a trigonal planar environment.  相似文献   

12.
New Dimeric Gold Selenolates: Preparation and Characterization of [(n-C4H9)4N]2[AuSSeC ? C(CN)2]2 and [(n-C4H9)4N]2[AuSe2C ? C(CN)2]2 The preparation and structural characterization of the dimeric AuI complexes of 1,1-dicyanoethene-2,2-thioseleonlate (i-mnts) and 1,1-dicyanoethene-2,2-diselenolate (i-mns), isolated as Bu4N salts, are described. They are isotype (monoclinic, space group P21/c, Z = 2) with lattice parameters: (Bu4N)2[Au(i-mnts)]2; a = 14.078(3) Å, b = 8.912(3) Å, c = 20.142(4) Å, β = 106.32(5)°; (Bu4N)2[Au(i-mns)]2; a = 13.998(3) Å, b = 9.125(3) Å, c = 20.039(2) Å, β = 105.12(5)°. Ab initio Hartree-Fock calculations based on the experimentally determined structure yield a positive value of the Au? Au bonding order suggesting weak bonding interactions between the d10 metal centres.  相似文献   

13.
Metal Sulfur-Nitrogen Compounds. 19. Novel Complexes of CuI with the S3N? Chelate Ligand. Preparation and Structure of [Ph4As][Cu(S3N)(CN)], [(Ph3P)2N][Cu(S3N)(S7N)], and [Ph4As]2[(S3N)Cu(S2O3)Cu(S3N)] In alkaline media S7NH reacts with Cu salts to yield different products. With Cu(CN) the ion [Cu(S3N)(CN)]? is formed, which was isolated as the [Ph4As]+ salt. The crystals are monoclinic, space group P21/c, a = 10.499(5), b = 13.418(6), c = 18.032(8) Å, β = 91.84°(3), Z = 4. Besides the known complex ions [Cu(S3N)2]? and [Cu(S3N)Cl]? still some more may be obtained when CuCl2 is reacted with S7NH: Under special conditions the S7N ring is partly preserved, and [Cu(S3N)(S7N)]? is formed. Its sparingly soluble [(Ph3P)2N]+ salt is monoclinic, space group P21/n, a = 9.335(6), b = 30.984(11), c = 15.108(8) Å, β = 102.87°(4), Z = 4. Using a longer reaction time a dinuclear complex [(S3N)Cu(S2O3)Cu(S3N)]? ? results from the reaction of CuCl2 with S7NH. The two Cu atoms are bridged by an S atom of the S2O3? ? anion. The [Ph4As]+ salt of the dinuclear complex anion is triclinic, space group P1 , a = 11.226(6), b = 12.423(6), c = 19.000(10) Å, β = 76.47°(4), β = 83.98°(4), γ = 84.71°(4), Z = 2. In all these compounds the coordination of CuI is trigonal-planar, the S3N? chelate group coordinates the Cu in the usual way by two S atoms.  相似文献   

14.
Studies on Polyhalides. 17. Preparation and Crystal Structure of Urotropinium Triiodide, UrHI3 Urotropinium triiodide C6H13N4I3 is formed by the reaction of equimolar amounts of urotropinium iodide and iodine in tBuOH as red-brown cube-like crystals melting at 402 K under decomposition. The compound crystallizes monoclinically in the space group P21/c with a = 952.0(3) pm, b = 1 160.2(6) pm, c = 1 149.9(4) pm, β = 92.22(3)° and Z = 4. The till now not described crystal structure (R = 0.027 for 1 860 observed reflexes) contains urotropinium ions UrH+ and slightly distorted triiodide ions I3?(d(I—I) = 292.3(1), 294.1(1) pm, φ(I—I—I) = 178.27(2)°) which are linked to ion pairs by a rather short contact (d(I …? I) = 389.0(1) pm, φ(I—I …? I) = 149.12(2)°).  相似文献   

15.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

16.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

17.
Pseudohalogeno Metal Compounds. LXXVIII. Structures of Planar and Tetrahedral Tetrafulminato Metal Complexes: [N(C3H7)4]2 [Ni(CNO)4], [N(C3H7)4]2 [Pt(CNO)4], and [N(C3H7)4]2 [Zn(CNO)4] The crystals contain the tetrafulminatometallates of an ideal square planar structure ([Ni(CNO)4]2–, [Pt(CNO)4]2–) with D4h symmetry at the nickel and platinum atom and a tetrahedron ([Zn(CNO)4]2–) with perfect Td symmetry at the zinc atom and with linear C≡N–O ligands. The metal carbon bonds (Ni–C: 187 pm, Pt–C: 200 pm, Zn–C: 201 pm) of the metal fulminates are very close to those of the corresponding cyano complexes. In the crystals the anions ([Ni(CNO)4]2–, [Pt(CNO)4]2–, [Zn(CNO)4]2–) are separated by the cations ([N(C3H7)4]+) which explains the thermal stability of these compounds.  相似文献   

18.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

19.
Studies of Polyhalides. 32. A New and Unforeseen Shape of the Dodecaiodide Ion I122–: Preparation and Crystal Structure of Bis[potassium(dibenzo-18-crown-6)]dodecaiodide [K(C20H24O6)]2I12 Particularly iodine rich polyiodides tend to form extended iodine nets by multiply concatenating iodide or triiodide ions through iodine molecules. Therefore the discovery of a not ramified, nearly isolated dodecaiodide ion I122– in the new compound [K(C20H24O6)]2I12 seems to be unexpected. This ion may be described as an extraordinary long fragment of the triiodide-iodine chain (I3 · I2).  相似文献   

20.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号