首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
Integration of redox enzymes with an electrode support and formation of an electrical contact between the biocatalysts and the electrode is the fundamental subject of bioelectronics and optobioelectronics. This review addresses the recent advances and the scientific progress in electrically contacted, layered enzyme electrodes, and discusses the future applications of the systems in various bioelectronic devices, for example, amperometric biosensors, sensoric arrays, logic gates, and optical memories. This review presents the methods for the immobilization of redox enzymes on electrodes and discusses the covalent linkage of proteins, the use of supramolecular affinity complexes, and the reconstitution of apo-redox enzymes for the nanoengineering of electrodes with protein monolayers of electrodes with protein monolayers and multilayers. Electrical contact in the layered enzyme electrode is achieved by the application of diffusional electron mediators, such as ferrocene derivatives, ferricyanide, quinones, and bipyridinium salts. Covalent tethering of electron relay units to layered enzyme electrodes, the cross-linking of affinity complexes formed between redox proteins and electrodes functionalized with relay-cofactor units, or surface reconstitution of apo-enzymes on relay-cofactor-functionalized electrodes yield bioelectrocatalytic electrodes. The application of the functionalized electrodes as biosensor devices is addressed and further application of electrically "wired" enzymes as catalytic interfaces in biofuel cells is discussed. The organization of sensor arrays, self-calibrated biosensors, or gated bioelectronic devices requires the microstructuring of biomaterials on solid supports in the form of ordered micro-patterns. For example, light-sensitive layers composed of azides, benzophenone, or diazine derivatives associated with solid supports can be irradiated through masks to enable the patterned covalent linkage of biomaterials to surfaces. Alternatively, patterning of biomaterials can be accomplished by noncovalent interactions (such as in affinity complexes between avidin and a photolabeled biotin, or between an antibody and a photoisomerizable antigen layer) to provide a means of organizing protein microstructures on surfaces. The organization of patterned hydrophilic/hydrophobic domains on surfaces, by using photolithography, stamping, or micromachining methods, allows the selective patterning of surfaces by hydrophobic, noncovalent interactions. Photoactivated layered enzyme electrodes act as light-switchable optobioelectronic systems for the amperometric transduction of recorded photonic information. These systems can act as optical memories, biomolecular amplifiers, or logic gates. The photoswitchable enzyme electrodes are generated by the tethering of photoisomerizable groups to the protein, the reconstitution of apo-enzymes with semisynthetic photoisomerizable cofactor units, or the coupling of photoisomerizable electron relay units.  相似文献   

2.
Polymer photoelectronic device based on interaction between π-conjugated polymer matrices and photochromic molecules was fabricated. The theoretical and experimental studies proved that the photochromic reaction in studied devices should eventuate in changes of optical and electrical properties of polymers such as luminescence and conductivity. The quantum chemical calculations showed that the presence of dipolar species in the vicinity of a polymer chain modifies the on-chain site energies and consequently increases the width of the distribution of hopping transport states. Optical switching was studied using standard absorption and photoluminescence spectroscopy. A strong photoluminescence quenching after the photochromic conversion caused by radiative energy transfer was observed. The influence of photoswitchable charge carrier traps on charge transport were evaluated by Space Charge Limited Current (SCLC) method. It was shown that deep traps may significantly affect the energy of the transport level, and thus modulate the transport of charge carriers.  相似文献   

3.
Self-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs. Different concepts, in particular self-dilution and rigid biaryl backbones, have been investigated. The required SH-functionalized azobenzene glycoconjugates were synthesized through a modular approach, and the respective glyco-SAMs were fabricated on Au(111). Their photoswitching properties have been extensively investigated by applying a powerful set of methods (IRRAS, XPS, and NEXAFS). Indeed, the combination of tailor-made biaryl-azobenzene glycosides and suitable diluent molecules led to photoswitchable glyco-SAMs with a significantly enhanced and unprecedented switching capacity.  相似文献   

4.
Light‐driven control of biological processes using photoswitchable proteins allows high spatiotemporal interrogation or manipulation of such processes, assisting in understanding their functions. Despite considerable advances, however, the wide spread use of optical control has been hampered by a limited repertoire of photoswitchable proteins and a lack of generalized design strategy. Herein, we present a repeat module‐based rational design of a photoswitchable protein composed of LRR (Leucine‐rich repeat) modules using azobenzene as a photochromic ligand. Our design approach involves the rational selection of a Cβ pair between two nearby modules within a convex region and subsequent cross‐linking with a photochromic ligand. We demonstrate the general utility and potential of our strategy by showing the design of three target‐specific photoswitchable proteins and a light‐driven modulation of the cell signaling. With an abundance of LRR proteins in nature, our approach can expand the repertoire of photoswitchable proteins for light‐driven control of biological processes.  相似文献   

5.
The absorbance, fluorescence, and refractive index of a photochromic material can be modulated under the influence of optical stimulations. The reversible modification of these macroscopic properties is a result of photoinduced transformations at the molecular level. These processes can be exploited to mediate the interplay of optical signals and offer the opportunity to design and implement photonic devices for optical processing based on molecular components.  相似文献   

6.
Switching systems operating in a cooperative manner capable of converting light energy into mechanical motion are of great interest for optical devices, data storage, nanoscale energy converters and molecular sensing. Herein, photoswitchable monolayers were formed at the air–water interface from either a pure bis(thiaxanthylidene)‐based photoswitchable amphiphile or from a mixture of the photoswitchable amphiphile with a conventional lipid dipalmitoylphosphatidylcholine (DPPC). Efficient photoisomerization of the anti ‐folded to syn ‐folded geometry of the amphiphile's central core induces changes in the surface pressure in either direction, depending on the initial molecular density. Additionally, the switching behavior can be regulated in the presence of DPPC, which influences the packing of the molecules, thereby controlling the transformation upon irradiation. Bis(thiaxanthylidene)‐based photoswitchable monolayers provide a promising system to explore cooperativity and amplification of motion.  相似文献   

7.
Spiroxazine are of considerable interest as photochromic materials because of their application. On the other hand, surface plasmon resonance (SPR) is a well-known optical method for measuring optical constants of thin film. In this study, photochromic materials were used as self-assembled monolayers (SAMs) of newly synthesized spiroxazine derivatives. We used Fresnel equation (four-layer model) to determine the precise dielectric constant () of the photochromic monolayers. Structure changes of spiroxazine derivatives under UV-light irradiation resulted in the change of optical constants, the dielectric constant and thickness. The obtained results indicated that the ring opening of photochromic spiroxazine can lead to the decrease in the dielectric constant and thickness.  相似文献   

8.
Since the discovery of the first ferroelectric Rochelle salt, most ferroelectrics have been investigated showing thermally triggered symmetry-breaking phase transition. Although photochromism arising from geometrical isomerization was reported as early as 1867, such photoswitchable ferroelectric crystals have scarcely been developed to date. Herein, we report that salicylideneaniline is a photochromic ferroelectric crystal. Upon photoirradiation, the dielectric constant shows obvious switching between high and low dielectric states, and more importantly, the ferroelectric polarization demonstrates quick and reversible switching. This work opens the gate to developing photoswitchable ferroelectrics, which holds great potential for applications in optically controlled smart devices.  相似文献   

9.
有机光致变色材料由于在光学记忆及分子开关器件等领域具有潜在的应用价值而备受关注。在众多有机光致变色系统中,二芳烯类光致变色化合物具有热稳定性好、耐疲劳、响应速度快和灵敏度高等优点,在光电材料和生物医学领域具有广阔的应用前景。近年来,围绕二芳烯构建可调控光化学传感器已成为功能材料领域的一大研究热点。本文主要介绍以二芳烯作为光调控单元合成具有多重调控功能的化学传感器的研究进展,并展望了该领域的应用前景和研究方向。  相似文献   

10.
For a molecular electronics technology to be fully serviceable, switching functions will be indispensable. Specifically, it will be desirable to control the conductivity of a given molecule using an external stimulus. This tutorial review discusses photoswitchable mixed valence systems that are comprised of a reversibly photoisomerizable bridging unit connecting two redox-active moieties, and as such represent some of the most simple chemical systems in which switching of charge delocalization can be explored. As photoisomerizable units, dithienylethenes have received much attention in the context of photoswitchable mixed valence, but there are also more exotic examples such as norbornadiene- and dimethyldihydropyrene-based switchable systems. As redox-active units responsible for the mixed valence phenomenon, both metal-containing as well as purely organic moieties have been employed. Typical investigations in this area involve the comparison of cyclic voltammograms and (near-infrared) optical absorption spectra of the two isomeric forms of a given system. The magnitude of the comproportionation constant and evaluation of intervalence absorption bands using appropriate theoretical models yield information regarding the extent of charge delocalization in the two isomeric forms. In several of the compounds investigated so far, the light stimulus induces a substantial increase of charge delocalization, or in the terminology commonly used in mixed valence chemistry, a changeover from class I to class II or even class III behavior.  相似文献   

11.
Photochromic-doped sol-gel materials have been prepared by adding a spiropyran photochromic dye to a solution of ethoxy silane monomers containing non-reacting ethyl radicals. After polymerization, normal photochromism (i.e., colored material upon UV irradiation) is obtained in the resulting matrix. The sol-gel matrix hinders the organic molecule rotations, thus giving two stable states, which can be reversibly switched by UV and green-blue irradiation respectively.If these materials are attached to optical fibers, the properties of the light throughput may be modified. Simple fiber-optic/photochromic devices made of two optical fibers placed in a V-groove removable connector have been prepared. Once cured, these devices behave as optically addressed variable delay generators. The same devices can be used for preparing simple optical switches and routing systems.  相似文献   

12.
The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.  相似文献   

13.
多功能二噻吩乙烯光致变色光分子开关材料   总被引:2,自引:0,他引:2  
邹祺  张隽佶  田禾 《化学进展》2012,(9):1632-1645
光致变色材料是一类在不同波长的光交替照射下,产生两种可进行可逆转换的光致异构体并伴随明显的光物理和光化学性能变化的材料。基于其特殊的光致异构性质,人们已开发出多种光致变色功能材料并将其广泛应用于超高密度光信息存储、分子开关、分子逻辑门、分子导线、光电材料、多光子器件、表面/纳米器件、液晶材料、化学传感、生物成像、自组装、聚集诱导发光、光控生物体系等诸多领域。其中,二噻吩乙烯类化合物因其出色的热稳定性、优良的耐疲劳性、快的响应速率、高的转化率和量子产率以及出色的固相反应活性而成为理想的光致变色材料之一。本文主要围绕近期本研究组研究成果着重介绍近几年二噻吩乙烯类化合物从溶液体系到功能化表面体系的研究进展,探讨当前该领域存在的问题并对其前景和发展方向进行展望。  相似文献   

14.
氢键型超分子聚合物的合成、结构与应用   总被引:2,自引:0,他引:2  
氢键型超分子聚合物是重复单元经氢键相互作用连接在一起的阵列,可生成液晶态,多样化的几何形状和高有序的凝聚态结构。氢键的温度敏感性和可逆性导致氢键型超分子聚合物具有和传统共价键结合的聚合物不同的性能。氢键型超分子聚合物是一类动态的智能型功能高分子材料,可在光化学、光电转换、非线性光学、弹性体、水凝胶和生物医用工程等领域广泛应用。本文从氢键型超分子聚合物化学(合成与机理)、物理(结构与性能)和工程(加工与应用)三个方面介绍氢键型超分子聚合物的进展。  相似文献   

15.
Controlled switchable surface   总被引:2,自引:0,他引:2  
The macroscopic properties of a surface can be intelligently controlled by alternating the states of the modified molecules, such as polymers, metallic oxide, or self-assembled monolayers (SAMs). This article reviews various approaches to create a switchable surface and different types of external stimuli used to switch the surface properties. This area is of potential benefit for biomaterials, biosensors, information storage, microfluidic systems, adhesive materials, nanolithography, and so on.  相似文献   

16.
Molecular switches as photocontrollable "smart" receptors   总被引:1,自引:0,他引:1  
  相似文献   

17.
Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp) and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol) copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.  相似文献   

18.
Recent years have witnessed tremendous progress and developments of the photoswitchable spiropyran-based polymers, owing to distinctive and particular physicochemical properties of their isomers upon a variety of triggers, and especially light illumination. Light is a fascinating and green stimulus because of its remote control, micron- or submicron-sized focusing area with controllable wavelength and energy, non-invasiveness and non-destructive nature, precisely controlled direction, and availability. In this review, we have emphasized on and summarized the most recent observations and efforts in the progress of photoswitchable spiropyran-based materials and their applications as sensors for heavy metal cations, anions, pH, acid and base vapors, wettability and humidity. Other items include data recording and anticounterfeiting devices, photorheological fluids, optically reversible switching membranes, photoregulating surface plasmon resonance, photomodulation of ion conductivity and mechanoresponsive polymers. The bio-based field is another interesting subject that is discussed here and consists of reversible cell sheet engineering, photodynamic therapy, switchable fluorescence labeling, controlled drug delivery and biological ion channels. On the other hand, limited light penetration inside the living tissues and hazards of high-energy ultraviolet irradiation for initiating photochemical transformations have limited the use of such light-controlled systems in medicinal and therapeutic means. Those spiropyran-based materials which are susceptible to being triggered by low energy near IR (NIR) two-photon light irradiation and upconversion nanoparticles are recently under serious explorations and have been reviewed as a new perspective for their advanced applications.  相似文献   

19.
Photochromic organic-inorganic hybrid materials   总被引:1,自引:0,他引:1  
Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.  相似文献   

20.
光致变色聚合物研究进展   总被引:1,自引:0,他引:1  
本文主要介绍了9类光致变色聚合物的研究状况,包括光致变色螺吡喃聚合物、螺嗪聚合物、二芳基乙烯光致变色聚合物、偶氮苯类光致变色聚合物、苯氧基萘并萘醌光致变色聚合物、俘精酰亚胺光致变色共聚物、硫靛光致变色共聚物、双硫腙光致变色聚合物以及二氢吲嗪光致变色聚合物等。讨论了聚合物的合成、光致变色性质、影响聚合物性质的因素,并对光致变色聚合物未来的研究重点和方向作了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号