首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and Crystal Structure of (CH3NH3)8[NdCl6][NdCl4(H20)2]2Cl3 (CH3NH3)8[NdCl6][NdCl4 (H2O)2]2Cl3 is for the first time prepared and investigated by X-ray, single crystal work. It crystallizes in the monoclinic system (space group C2/m, Z = 2) with a = 9.358(5), b = 17.424(9), c = 15.360(8) Å, β = 108.30(4)°. The structure contains besides isolated Cl? ions distorted [NdCl6]3? octahedra and [NdCl4(H2O)2]? chains.  相似文献   

2.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

3.
The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

4.
A hydrothermal reaction of iron acetylacetonate, phosphoric acid, HF, N, N′‐bis(3‐aminopropyl)ethylenediamine and water at 150 °C gave rise to a new iron phosphate, [H3N(CH2)3NH2(CH2)2NH2(CH2)3NH3][Fe3F6(HPO4)2(PO4)] · 3H2O ( I ). The structure consists of Fe(1)O4F2, Fe(2)O3F3 octahedral and P(1)O3(OH) and P(2)O4 tetrahedral building units connected through their vertices to form fragments of tancoite‐type units. The tancoite‐type units are linked through the phosphate tetrahedra forming an unusual iron phosphate with a hitherto unknown low‐dimensional structure with three‐iron center.Magnetic studies indicate a complex behavior at low temperature and the high‐temperature data (150 — 300 K) has a Curie‐Weiss behavior. The calculated room temperature magnetic moment is 6 μB per Fe atom, and the Neel temperature, TN = 46K. Crystal data: orthorhombic, space group = I212121 (no. 24), a = 9.9042(11), b = 12.8865(14), c = 19.783(2)Å, U = 2524.9(5), Z = 4.  相似文献   

5.
A one‐dimensional aluminum phosphate, [NH3(CH2)2NH2(CH2)3NH3]3+ [Al(PO4)2]3—, has been synthesized hydrothermally in the presence of N‐(2‐Aminoethyl‐)1, 3‐diaminopropane (AEDAP) and its structure determined by single crystal X‐ray diffraction. Crystal data: space group = Pbca (no. 61), a = 16.850(2), b = 8.832(1), c = 17.688(4)Å, V = 2632.4(2)Å3, Z = 8, R1 = 0.0389 [5663 observed reflections with I > 2σ(I)]. The structure consists of anionic [Al(PO4)2]3— chains built up from AlO4 and PO4 tetrahedra, in which all the AlO4 vertices are shared and each PO4 tetrahedron possesses two terminal P=O linkages. The cations, which balances the negative charge of the chains, are located in between the chains and interact with the oxygen atoms through strong N—H···O hydrogen bonds. Additional characterization of the compound by powder XRD and MAS‐NMR has also been performed and described.  相似文献   

6.

Chemical preparation, crystal structure, thermogravimetric and differential analysis, solid state 31P MAS NMR characterization, and IR spectroscopic investigations are given for a new organic cation dihydrogenmonophosphate, (2-CH3OC6H4CH2NH3)H2PO4. This compound is monoclinic C2/c, with unit cell parameters a = 27.740(8), b = 4.827(2), c = 16.435(3) Å, β = 93.79(2)°, V = 2196 (1) Å3, Z = 8, and ρ = 1.422 g · cm?3. The crystal structure has been determined and refined to R = 0.046 (Rw = 0.056), using 1,746 independent reflections with I > 3σ (I). Its atomic arrangement can be described by infinite polyanions [H2PO4] n n ?, organized in ribbons alternating with organic cations. Strong hydrogen bonds connect the different components. Electrical conductivity measurements show that the [2-CH3OC6H4CH2NH3]H2PO4 has a low ionic conductivity value at 403 K.  相似文献   

7.
A hydrothermal reaction of a mixture of ZnO, HCl, ethylenediphosphonic acid, ethylenediamine, acetic acid in a water, THF mixture gave rise to a new three‐dimensional zinc ethylenediphosphonate, [NH3(CH2)2NH3][Zn3{O3P(CH2)2}4], I . The structure, determined by single crystal X‐ray diffraction, (monoclinic, space group = C2/c, a = 16.9948(14), b = 6.7383(6), c = 16.8886(14)Å, β = 1113.568(1)°, V = 1772.7(3)Å3, Z = 4, R1 = 0.0227, wR2 = 0.0601), consists of a network of strictly alternating ZnO4 and PO3C tetrahedral units linked through their vertices forming the three‐dimensional structure. The amine molecules occupy the middle of the 8‐membered channels and interact with the framework through the hydrogen bonds. Unlike other zinc diphosphonates, I appear to have close similarity to zinc phosphate structures reported in the literature. To our knowledge, this is the first three‐dimensional zinc diphosphonate prepared in the presence of an organic amine molecule.  相似文献   

8.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

9.
The red complex trans-Mo2(O2CCH3)2(μ-dppa)2(BF4)2, 1 , was prepared by reaction of [Mo2(O2CCH3)2(CH3CN)6][BF4]2 with dppa (dppa = Ph2PN(H)PPh2) in THF. The reactions of Mo2(O2C(CH2)nCH3)4 with dppa and (CH3)3SiX (X = Cl or Br) afforded the complexes trans-Mo2X2(O2C(CH2)nCH3)2(μ-dppa)2 (X = Cl, n = 2, 2; X = Br, n = 2, 3; X = Cl, n = 10, 4 ; X = Cl, n = 12, 5 ). Their UV-vis, IR and 31P{1H}-NMR spectra have been recorded and the structures of 1, 2 and 3 have been determined. Crystal data for 1 : space group P21/n, a = 12.243(1) Å, b = 17.222(1) Å, c = 13.266(1) Å, β = 95.529(1)°, V = 2784.1(6) Å3, Z = 2, with final residuals R = 0.0509 and Rw = 0.0582. Crystal data for 24CH3Cl2: space group P21/n, a = 13.438(1) Å, b = 19.276(1) Å, c = 14.182(1) Å, β = 111.464(1)°, V = 3418.9(6) Å3, Z = 2, with final residuals R = 0.0492 and Rw = 0.0695. Crystal data for 3·4CH2Cl2: space group P21/n, a= 13.579(1) Å, b = 19.425(1) Å, c = 14.199(1) Å, β = 111.881(2)°, V = 3475.6(7) Å3, Z = 2, with final residuals R = 0.0703 and Rw = 0.0851. Comparison of the structural data shows that the effect of the axial ligand on weakening the Mo-Mo bond strength is X? > CH3CN > BF4?. The Tm values are 121.7 °C for 2 , 111.1 °C for 3 and 91.5 °C for 5 , respectively.  相似文献   

10.
Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Decaborates(2–), [(C5H5N)2CH2][2-XB10H9]; X = Cl, Br, I [B10H10]2? reacts with chlorine, bromine and iodine or with N-halogenosuccinimide, yielding the monohalogenodecaborates [2-XB10H9]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of the isotypic chloro and bromo compounds [(C5H5N)2CH2][2-XB10H9] (monoclinic, space group C2/c, Z = 8; for X ? Cl: a = 33.174(5), b = 7.2809(4), c = 16.2232(7) Å, β = 113.307(7)°; for X = Br: a = 33.525(11), b = 7.281(2), c = 16.297(4) Å, β = 113.62(2)°) and of the iodo compound [(C5H5N)2CH2][2-IB10H9] (monoclinic, space group P21, Z = 2, a = 7.143(3), b = 13.568(4), c = 9.479(7) Å, β = 97.57(5)°) show columns of substituted boron clusters [2-XB10H9]2?, X = Cl, Br, I and bent dications [(C5H5N)2CH2]2+ along the shortest axis wich are assembled to alternating layers in the crystal lattice.  相似文献   

11.
Trans-[Cr(NH3)4(H2O)Cl]Cl2 (A) crystallizes in the monoclinic space group P21/m (No. 11) with a = 6.556(1), b = 10.630(5), c = 6.729(2) Å and β = 96.15(3)°. Trans-[Cr(NH3)4Cl2]I (B) has monoclinic C2/m (No. 12) space group and a = 9.877(2), b = 8.497(2), c = 6.047(2) Å and β = 108.98(2)°. Both unit cells contain two formula units. Cr? Cl, Cr? O(H2O) and three independent Cr? N(NH3) distances for A are 2.98(1), 2.023(2), 2.067(2), 2.086(3) and 2.064(3) °. Cr? Cl and Cr? N(NH3) bonds in B are 2.325(1) and 2.071(2) °. All octahedral angles are close to 90 and 180°. Both structures were refined to very low R values. Water molecule from trans-[Cr(NH3)4(H2O)Cl]2+ is hydrogen bonded to both ionic chlorides. Cation and two anions form the motive which repeats itself in the crystal. Cations and anions of the second structure are distributed in layers. Each cation and anion have coordination number eight.  相似文献   

12.
A Comparison of the Crystal Structures of the Tetraammoniates of Lithium Halides, LiBr·4NH3 and LiI·4NH3, with the Structure of Tetramethylammonium Iodide, N(CH3)4I Crystals of the tetraammoniates of LiBr and LiI sufficient in size for X‐ray structure determinations were obtained by slow evaporation of NH3 at room temperature from a clear solution of the halides in liquid ammonia. The compounds crystallize in the space group Pnma (No. 62) with four formula units in the unit cell: LiBr·4NH3: a = 11.947(5)Å, b = 7.047(4)Å, c = 9.472(3)Å LiI·4NH3: a = 12.646(3)Å, b = 7.302 (1)Å, c = 9.790(2)Å For N(CH3)4I the structure was now successfully solved including the hydrogen positions of the methyl groups. N(CH3)4I: P4/nmm (No. 129), Z = 2, a = 7.948(1)Å, c = 5.738(1)Å The ammoniates of LiBr and LiI crystallize isotypic in a strongly distorted arrangement of the CsCl motif. Even N(CH3)4I has an CsCl‐like structure. Both structure types differ mainly in their orientation of the [Li(NH3)4]+ — resp. [N(CH3)4]+ — cations with respect to the surrounding “cube” of anions.  相似文献   

13.
The synthesis and crystal structure of a new fluoromanganate(III), [(H3N(CH2)2)2NH2]2[MnF5(H2O)]3, is reported. The unit cell is unusually large: monoclinic, P21/c (no. 14), a = 41.0512(13) Å; b = 9.6469(4) Å; c = 12.8021(7) Å; β = 91.927(4)°; Z = 8, R = 0.0627 and wR2 = 0.1347. The [MnF5(H2O)]2– anions are octahedral with a strong distortion along the F–Mn OH2 axes due to the Jahn-Teller effect. A very rich intermolecular hydrogen bond framework is present, leading to chains of octahedra linked by double-hydrogen bonds. The polarized optical spectra on single crystals are explained in terms of the intraconfigurational d4 transitions split by a ligand field of C4v symmetry.  相似文献   

14.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][PrCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][PrCl4(H2O)2] has been prepared for the first time and the crystal structure has been determined from single crystal X‐ray diffraction data. The compound crystallizes orthorhombically in the space group Cmca (Z = 8) with a = 1796.6(2) pm, b = 940.7(1) pm, and c = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge‐connected trigondodecahedra [PrCl6(H2O)2]3– according to [PrCl4/2Cl2(H2O)2], which are held together by dimethylammonium cations ([(CH3)2NH2]+). In order to study the interactions between the praseodymium cation (Pr3+) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

15.
The structure of two trinuclear iron acetates [Fe3O(CH3COO)6(H2O)3]Cl· 6H2O (I) and [Fe3O(CH3COO)6(H2O)3][FeCl4] · 2CH3COOH (II) was determined by X-ray diffraction analysis. Crystals I and II are ionic and belong to the orthorhombic system with parameters a = 13.704(3), b = 23.332(5), c = 9.167(2) Å, R = 0.0355, space goup P21212 for I and a = 10.145(4), b = 15.323(6), c = 22.999(8) Å, R = 0.0752, space group Pbc21 for II. The complex cation [Fe3O(CH3COO)6(H2O)3]+ has a μ3-O-bridged structure typical for trinuclear iron (III) compounds. As shown by Mössbauer spectroscopy, the iron(III) ions are in the high-spin state. In trinuclear cations, antiferromagnetic exchange interaction takes place between the Fe(III) ions with the exchange parameter J = -26.69 cm?1 for II (Heisenberg-Dirac-Van Vleck model for D3h, symmetry).  相似文献   

16.
Mixed-ligand Complexes of Rhenium. V. The Formation of Nitrene Complexes by Condensation of Acetone at Coordinated Nitrido Ligands. Syntheses and Structures of fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] Complexes (X = Cl, Br) The reaction of rhenium(V)-mixed-ligand complexes of the general formula [ReN(Cl)(Me2PhP)2(R2tcb)] (HR2tcb = N? (N,N-dialkylthiocarbamoyl)benzamidine) with HCl or HBr in acetone initializes a condensation of the solvent and results in nitrene-like compounds as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the condensed acetone. The chelate ligands are removed during this reaction and complexes of the type fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] (X = Cl, Br) are formed. fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] crystallizes triclinic in the space group P1, a = 8.575(4); b = 9.088(3); c = 18.389(9) Å; α = 75.67(3)°, β = 85.30(3)°, γ = 70.58(4)°; Z = 2. A final R value of 0.031 was obtained on the basis of 6011 independent reflections with I ≥ 2σ(I). Rhenium is coordinated in a distorted octahedral environment with the three chloro ligands in facial positions. The rhenium-nitrogen bond (1,68(1) Å) is only slightly longer than typical Re? N bonding distances in nitrido complexes. fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] is isomorphous with the chloro complex. Triclinic cell with a = 8.625(4); b = 9.198(3); c = 18.581(5) Å; α = 75.62(3)°, β = 85.40(3)°, γ = 70.91(3)°; Z = 2. The R value converged at 0.049 on the basis of 3644 independent reflections with I ≥ 2σ(I). fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] as well as fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] crystallizes in the noncentrosymmetric space group P1.  相似文献   

17.
Preparation, Spectroscopic Characterization, and Crystal Structures of [(C5H5N)2CH2][PtCl5(SCN)] and cis -[(C5H5N)2CH2][PtCl4(SCN)2] By treatment of [PtCl6]2– with SCN in aqueous solution a mixture of chlorothiocyanatoplatinates(IV) is formed, from which [PtCl5(SCN)]2– and cis-[PtCl4(SCN)2]2– have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-Ray structure determinations on single crystals of [(C5H5N)2CH2][PtCl5(SCN)] ( 1 ) (tetragonal, space group P 43, a = 7.687(1), c = 29.698(4), Z = 4) and cis-[(C5H5N)2CH2][PtCl4(SCN)2] ( 2 ) (monoclinic, space group P 21/n, a = 11.2467(9), b = 15.0445(10), c = 11.3179(13), β = 92.840(9)°, Z = 4) show, that the thiocyanate groups are coordinated via S atoms with average Pt–S distances of 2.339 Å and Pt–S–C angles of 104.7° up to 107.1°. Using the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra have been assigned by normal coordinate analyses. The valence force constants of the S–Pt–Cl˙ axes are fd(PtS) = 1.81 ( 1 ) and 1.87 ( 2 ), fd(PtCl × ) = 1.77 ( 1 ) and 1.81 ( 2 ), of the Cl–Pt–Cl axes are fd(PtCl) = 1.93 ( 1 ) and 1.90 mdyn/Å ( 2 ). The 195Pt NMR spectra from dichlormethane solutions exhibit each one sharp signal at 3975.6 ( 1 ) and 3231.6 ppm ( 2 ), respectively.  相似文献   

18.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

19.
Synthesis of [enH2][Mn3(V2O7)2(H2O)2] 1, the first of a new class of organically derivatized mixed metal oxides, is achieved at pH 8 and 140°C by hydrothermal reaction of [Mn3O(OAc)6(py)3][BF4], V2O5, NH2CH2CH2NH2 (en) and H3BO3 in a 0.67: 1: 6: 10 ratio. Crystals of 1 are triclinic P-1, a=5.743(1) Å, b=7.931(1) Å, c=9.313(1) Å, α=68.54(1), β=85.78(1), γ=84.50(1)°, V=392.62(9) Å3. The X-ray structure refined to R=0.025. Compound 1 has an anionic open 3-D framework based on linear tri-manganese units of edge shared [Mn(II)O6] octahedra connected through divanadate [V2O7] groups. The organic counterions are located in 1-D tunnels generated from six-membered [Mn2V4] rings. The temperature dependent magnetic susceptibility of 1 indicates a paramagnetic to anti-ferromagnetic transition with a Néel temperature of 10 K.  相似文献   

20.
Hexaminecyclotriphosphazenehemiammoniate, P3N3(NH2)6 · 0.5 NH3, a Product of High Pressure Ammonolysis of White Phosphorus White phosphorus gives at NH3-pressures ≥5 kbar and temperatures above 250°C in a disproportionation reaction P3N3(NH2)6 · 0.5 NH3; besides these products red phosphorus is formed. The yield on P3N3(NH2)6 · 0.5 NH3 increases with T and is about 70–80% at 400°C as to the disproportionation reaction of the amount of white phosphorus. X-ray structure determination was successful on single crystals of P3N3(NH2)6 · 0.5 NH3. Pbca, N = 8 a = 11.395(3) Å, b = 12.935(4) Å, c = 12.834(4) Å R = 0.035, Rw = 0.041 with w = 1, N (Fo2) ≥ 3σ(Fo2) = 1371, N(Var.) = 166. The molecules are connected by N? H? N-bridgebonds with 3.04 Å ≤ d(N …? N) ≤ 3,19 Å and d (N? H) = 0.87 Å. The compound is furthermore characterized by IR-data and its thermical behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号